
hexagonal architecture vs microservices

hexagonal architecture vs microservices represents a critical comparison in the domain of modern

software architecture. Both architectural patterns aim to improve software modularity, scalability, and

maintainability, yet they approach these goals from different perspectives. Hexagonal architecture, also

known as ports and adapters, focuses on designing systems that are independent of external

frameworks, databases, and user interfaces. Microservices, on the other hand, emphasize

decomposing applications into loosely coupled, independently deployable services. Understanding the

distinctions, benefits, and use cases of hexagonal architecture versus microservices is essential for

architects and developers aiming to build robust, flexible systems. This article explores these two

paradigms in detail, highlighting their core principles, advantages, challenges, and how they can

complement each other in complex software ecosystems.

Understanding Hexagonal Architecture

Overview of Microservices Architecture

Comparative Analysis: Hexagonal Architecture vs Microservices

Benefits and Challenges of Hexagonal Architecture

Benefits and Challenges of Microservices

When to Use Hexagonal Architecture or Microservices

Integrating Hexagonal Architecture Within Microservices



Understanding Hexagonal Architecture

Hexagonal architecture is a design pattern that structures an application to isolate its core logic from

external influences. Also known as ports and adapters architecture, it promotes a clear separation

between the domain logic and external systems such as databases, user interfaces, and third-party

services. The key concept is to make the application’s core independent, enabling it to interact with the

outside world through well-defined ports and adapters.

Core Principles of Hexagonal Architecture

The architecture revolves around the idea that the domain logic should be at the center, surrounded by

ports that define input and output operations. Adapters then implement these ports to connect with

external systems. This separation ensures that the core business rules remain unaffected by changes

in external technologies or frameworks.

Structure and Components

Typically, the hexagonal architecture consists of three layers:

Domain Layer: Contains business logic and rules.

Application Layer: Defines ports that expose domain functionality.

Infrastructure Layer: Implements adapters for interacting with databases, UI, and external

services.



Overview of Microservices Architecture

Microservices architecture is an approach to building software systems as a collection of small,

autonomous services that communicate over network protocols. Each microservice encapsulates a

specific business capability and can be developed, deployed, and scaled independently. This approach

contrasts with traditional monolithic architectures by breaking down applications into manageable

components.

Key Characteristics of Microservices

Microservices typically possess the following traits:

Decentralized data management with each service owning its database.

Independent deployment pipelines for each service.

Communication through lightweight protocols such as HTTP/REST or messaging queues.

Focus on business capabilities aligned with bounded contexts.

Typical Microservices Architecture Components

A microservices-based system generally includes multiple independent services, API gateways to route

requests, service discovery mechanisms, and centralized logging and monitoring for operational

visibility.



Comparative Analysis: Hexagonal Architecture vs

Microservices

While hexagonal architecture and microservices both aim to improve modularity and scalability, they

operate at different levels of software design. Hexagonal architecture focuses on the internal structure

of a single application or service, enhancing testability and adaptability. Microservices architecture

addresses system-level decomposition by splitting functionality into discrete services.

Scope and Focus

Hexagonal architecture is primarily concerned with isolating business logic within a single application,

whereas microservices deal with the distribution of functionality across multiple services. This

distinction means hexagonal architecture can be implemented within a microservice or a monolith.

Modularity and Independence

Both architectures promote modularity. Hexagonal architecture achieves this by decoupling the core

logic from external dependencies. Microservices foster independence by enabling services to be

developed, deployed, and scaled separately.

Communication and Integration

In hexagonal architecture, communication occurs internally via ports and adapters, often within the

same process. In microservices, communication happens over networks, using protocols like REST or

messaging, which introduces complexities such as latency and fault tolerance.



Benefits and Challenges of Hexagonal Architecture

Implementing hexagonal architecture offers several advantages, especially for managing complexity

within an application.

Benefits

Improved Testability: Isolation of business logic simplifies unit testing.

Flexibility: Easy to switch external systems without affecting core logic.

Maintainability: Clear separation of concerns aids in code organization and maintenance.

Technology Agnostic: Core domain remains independent of specific technologies or frameworks.

Challenges

Initial Learning Curve: Developers must understand ports and adapters concepts.

Complexity in Small Projects: May introduce unnecessary abstraction for simple applications.

Potential Overhead: Additional layers can increase development effort.



Benefits and Challenges of Microservices

Microservices architecture provides significant benefits but also introduces unique challenges that need

consideration.

Benefits

Scalability: Services can be scaled independently based on demand.

Resilience: Failure in one service does not necessarily affect others.

Technology Diversity: Teams can choose different technologies per service.

Faster Deployment: Independent deployment cycles accelerate delivery.

Challenges

Complexity: Distributed systems require handling network communication, latency, and fault

tolerance.

Data Consistency: Managing transactions and consistency across services can be difficult.

Operational Overhead: Requires infrastructure for service discovery, monitoring, and logging.

Inter-Service Communication: Designing robust APIs and handling versioning is critical.



When to Use Hexagonal Architecture or Microservices

Choosing between hexagonal architecture and microservices depends on project requirements, team

expertise, and system complexity. These architectures are not mutually exclusive and can be

combined effectively.

Use Cases for Hexagonal Architecture

Applications needing clear separation between business logic and infrastructure.

Projects where testability and maintainability are priorities.

Systems aiming for technology-agnostic core logic to accommodate future changes.

Monolithic applications that require improved structure and flexibility.

Use Cases for Microservices

Large-scale systems requiring independent scaling of components.

Organizations with multiple teams working on different business capabilities.

Systems demanding high availability and fault tolerance.

Projects that benefit from technology diversity and continuous deployment.



Integrating Hexagonal Architecture Within Microservices

Hexagonal architecture can be effectively applied inside individual microservices to enhance their

internal structure. By using hexagonal principles, each microservice can maintain a clean separation

between domain logic and external dependencies, increasing testability and adaptability.

Advantages of Combining Both

Enhanced Modularity: Clear boundaries within each microservice.

Improved Maintainability: Easier to update and replace adapters without impacting core logic.

Better Test Coverage: Domain logic can be tested independently from infrastructure concerns.

Consistency: Uniform architectural style across services simplifies understanding and

onboarding.

Incorporating hexagonal architecture within microservices is a best practice for building scalable,

maintainable, and resilient distributed systems. This layered approach helps manage complexity both

within and across services, aligning with modern software development goals.

Frequently Asked Questions

What is hexagonal architecture?

Hexagonal architecture, also known as Ports and Adapters, is a software design pattern that

emphasizes a clear separation between the core business logic and external systems, allowing easy



adaptability and maintainability.

What are microservices?

Microservices is an architectural style that structures an application as a collection of small,

autonomous services, each responsible for a specific business capability, communicating over network

protocols.

How does hexagonal architecture differ from microservices?

Hexagonal architecture is a design pattern focused on structuring individual applications with clear

boundaries between core logic and external interfaces, whereas microservices is an architectural

approach that decomposes an entire system into multiple independent services.

Can hexagonal architecture be used within microservices?

Yes, hexagonal architecture can be applied within each microservice to ensure that the service’s core

domain logic is isolated from infrastructure concerns, making the microservice more maintainable and

testable.

Which architecture is better for scalability: hexagonal architecture or

microservices?

Microservices architecture generally offers better scalability at the system level since services can be

scaled independently, while hexagonal architecture improves code maintainability and can be used

inside scalable microservices.

Does hexagonal architecture replace microservices?

No, hexagonal architecture does not replace microservices; instead, it can complement microservices

by providing a robust way to organize the internal structure of each microservice.



What are the main benefits of using hexagonal architecture in

microservices?

Using hexagonal architecture in microservices enhances testability, maintainability, and flexibility by

decoupling business logic from external dependencies within each service.

How do microservices handle communication compared to hexagonal

architecture?

Microservices communicate over network protocols such as HTTP or messaging, focusing on inter-

service communication, while hexagonal architecture deals with the internal interaction between the

core logic and external interfaces within a single application.

Is it possible to implement microservices without hexagonal

architecture?

Yes, microservices can be implemented without hexagonal architecture, but adopting hexagonal

architecture can improve service design by promoting separation of concerns and easier testing.

What challenges might arise when combining hexagonal architecture

with microservices?

Combining hexagonal architecture with microservices can increase complexity due to multiple layers of

abstraction and requires disciplined design to ensure that each service remains cohesive and that

inter-service communication does not become a bottleneck.

Additional Resources

1. Hexagonal Architecture: Designing Robust and Maintainable Software

This book offers a comprehensive introduction to hexagonal architecture, also known as the ports and



adapters pattern. It explains how this architectural style promotes loose coupling and testability by

isolating the core logic from external systems. Readers will learn practical techniques to implement

hexagonal architecture in various programming languages and improve software maintainability.

2. Microservices vs. Hexagonal Architecture: Choosing the Right Approach

Focused on comparing microservices and hexagonal architecture, this book helps software architects

and developers understand the strengths and trade-offs of each approach. It covers scenarios where

one might be more beneficial than the other and discusses how these patterns can coexist in large-

scale systems. The book includes case studies and decision frameworks to guide architectural

choices.

3. Building Scalable Systems with Microservices and Hexagonal Architecture

This title explores how microservices and hexagonal architecture can be combined to create scalable,

resilient systems. It delves into design principles, communication patterns, and deployment strategies

that leverage both approaches. Readers will gain insights into managing complexity and improving

system evolution through modular design.

4. Practical Hexagonal Architecture for Microservices Developers

Targeted at developers working with microservices, this book provides practical guidance on applying

hexagonal architecture principles within microservice-based applications. It covers techniques for

defining clear boundaries, handling integrations, and ensuring testability in distributed systems. The

content is enriched with code examples and real-world scenarios.

5. Domain-Driven Design and Hexagonal Architecture: A Perfect Match

This book bridges domain-driven design (DDD) concepts with hexagonal architecture to help

developers build well-structured, domain-centric applications. It explains how hexagonal architecture

supports DDD’s emphasis on the domain model by decoupling it from infrastructure concerns. Readers

will find strategies for aligning architecture with business requirements effectively.

6. Microservices Patterns and Hexagonal Architecture: Implementing Modern Software Solutions

Covering a broad spectrum of microservices design patterns, this book integrates hexagonal



architecture as a foundational concept for building modular services. It discusses service

decomposition, event-driven communication, and testing strategies alongside hexagonal principles. The

author provides practical advice for creating resilient and maintainable microservices.

7. Refactoring to Hexagonal Architecture in a Microservices World

This guide focuses on refactoring existing microservice applications to adopt hexagonal architecture. It

addresses common challenges such as breaking dependencies on frameworks and external services,

improving testability, and enhancing modularity. The book includes step-by-step refactoring techniques

and best practices to evolve legacy codebases.

8. Hexagonal Architecture in Action: Case Studies from Microservices Projects

Through detailed case studies, this book demonstrates the application of hexagonal architecture in

real-world microservices projects. It highlights successes and pitfalls, providing valuable lessons for

architects and developers. The narrative helps readers understand how to adapt hexagonal principles

to diverse business domains and technical contexts.

9. Comparative Architectures: Hexagonal Architecture, Microservices, and Beyond

This book offers a wider perspective on software architecture by comparing hexagonal architecture and

microservices with other modern architectural styles. It evaluates each pattern’s impact on scalability,

maintainability, and team organization. Readers will benefit from frameworks and criteria to select the

most suitable architecture for their projects.

Hexagonal Architecture Vs Microservices

Find other PDF articles:
http://www.speargroupllc.com/gacor1-15/pdf?ID=Sxd86-4688&title=harry-wong-first-days-of-school.
pdf

  hexagonal architecture vs microservices: Hands-On Software Architecture with Java
Giuseppe Bonocore, Arunee Singhchawla, 2022-03-16 Build robust and scalable Java applications by
learning how to implement every aspect of software architecture Key FeaturesUnderstand the
fundamentals of software architecture and build production-grade applications in JavaMake smart

http://www.speargroupllc.com/gacor1-15/files?ID=GEC08-2708&title=hexagonal-architecture-vs-microservices.pdf
http://www.speargroupllc.com/gacor1-15/pdf?ID=Sxd86-4688&title=harry-wong-first-days-of-school.pdf
http://www.speargroupllc.com/gacor1-15/pdf?ID=Sxd86-4688&title=harry-wong-first-days-of-school.pdf


architectural decisions with comprehensive coverage of various architectural approaches from SOA
to microservicesGain an in-depth understanding of deployment considerations with cloud and CI/CD
pipelinesBook Description Well-written software architecture is the core of an efficient and scalable
enterprise application. Java, the most widespread technology in current enterprises, provides
complete toolkits to support the implementation of a well-designed architecture. This book starts
with the fundamentals of architecture and takes you through the basic components of application
architecture. You'll cover the different types of software architectural patterns and application
integration patterns and learn about their most widespread implementation in Java. You'll then
explore cloud-native architectures and best practices for enhancing existing applications to better
suit a cloud-enabled world. Later, the book highlights some cross-cutting concerns and the
importance of monitoring and tracing for planning the evolution of the software, foreseeing
predictable maintenance, and troubleshooting. The book concludes with an analysis of the current
status of software architectures in Java programming and offers insights into transforming your
architecture to reduce technical debt. By the end of this software architecture book, you'll have
acquired some of the most valuable and in-demand software architect skills to progress in your
career. What you will learnUnderstand the importance of requirements engineering, including
functional versus non-functional requirementsExplore design techniques such as domain-driven
design, test-driven development (TDD), and behavior-driven developmentDiscover the mantras of
selecting the right architectural patterns for modern applicationsExplore different integration
patternsEnhance existing applications with essential cloud-native patterns and recommended
practicesAddress cross-cutting considerations in enterprise applications regardless of architectural
choices and application typeWho this book is for This book is for Java software engineers who want
to become software architects and learn everything a modern software architect needs to know. The
book is also for software architects, technical leaders, vice presidents of software engineering, and
CTOs looking to extend their knowledge and stay up to date with the latest developments in the field
of software architecture.
  hexagonal architecture vs microservices: Microservice APIs Jose Haro Peralta, 2023-01-10
Microservice APIs in Python' shares successful strategies and techniques for designing
Microservices systems, with a particular emphasis on creating easy-to-consume APIs. The practical
guide focuses on implementation over philosophising and has just enough theory to get you started.
You'll quickly go hands on designing the architecture for a microservices platform, produce standard
specifications for REST and GraphQL APIs, and bake in authentication features to keep your APIs
secure.
  hexagonal architecture vs microservices: Java Microservices and Containers in the Cloud
Binildas A. Christudas, 2024-09-28 Spring Boot helps developers create applications that simply run.
When minimal configuration is required to start up an application, even novice Java developers are
ready to start. But this simplicity shouldn't constrain developers in addressing more complex
enterprise requirements where microservice architecture is concerned. With the need to rapidly
deploy, patch, or scale applications, containers provide solutions which can accelerate development,
testing as well as production cycles. The cloud helps companies to scale and adapt at speed,
accelerate innovation and drive business agility, without heavy upfront IT investment. What if we
can equip even a novice developer with all that is required to help enterprises achieve all of this, this
book does this and more. Java Microservices and Containers in the Cloud offers a comprehensive
guide to both architecture and programming aspects to Java microservices development, providing a
fully hands-on experience. We not only describe various architecture patterns but also provide
practical implementations of each pattern through code examples. Despite the focus on architecture,
this book is designed to be accessible to novice developers with only basic programming skills, such
as writing a Hello World program and using Maven to compile and run Java code. It ensures that
even such readers can easily comprehend, deploy, and execute the code samples provided in the
book. Regardless of your current knowledge or lack thereof in Docker, Kubernetes, and Cloud
technologies, this book will empower you to develop programming skills in these areas. There is no



restriction on beginners attempting to understand serious and non-trivial architecture constraints.
While mastering concurrency and scalability techniques often requires years of experience, this
book promises to empower you to write microservices, as well as how to containerize and deploy
them in the cloud. If you are a non-programming manager who is not afraid to read code snippets,
this book will empower you to navigate the challenges posed by seasoned architects. It will equip
you with the necessary understanding of specialized jargon, enabling you to engage in more
meaningful discussions and break through barriers when collaborating with programmers,
architects and engineers across the table. The code examples provided in the book are intentionally
designed to be simple and accessible to all, regardless of your programming background. Even if you
are a C# or Python programmer and not familiar with Java, you will find the code examples easy to
follow and understand. You will Acquire proficiency in both RPC-style and Messaging-style
inter-microservice communication Construct microservices utilizing a combination of SQL
(PostgreSQL) and NoSQL (MongoDB) databases Leverage Liquibase, a database schema version
control tool, and administer UI in conjunction with PostgreSQL Leverage both GraphQL and
conventional REST approaches side by side Gain practical experience in implementing Hexagonal
and Onion Architectures through hands-on exercises Integrate asynchronous processing into your
Java applications using powerful APIs such as DeferredResult and CompletableFuture Who it's for:
Developers, programmers and Architects who want to level up their Java Micoservices and
Archtecture knowledge as well as managers who want to brush up on their technical knowledge
around the topic.
  hexagonal architecture vs microservices: Microservices Patterns Chris Richardson,
2018-10-27 A comprehensive overview of the challenges teams face when moving to microservices,
with industry-tested solutions to these problems. - Tim Moore, Lightbend 44 reusable patterns to
develop and deploy reliable production-quality microservices-based applications, with worked
examples in Java Key Features 44 design patterns for building and deploying microservices
applications Drawing on decades of unique experience from author and microservice architecture
pioneer Chris Richardson A pragmatic approach to the benefits and the drawbacks of microservices
architecture Solve service decomposition, transaction management, and inter-service
communication Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats
from Manning Publications. About The Book Microservices Patterns teaches you 44 reusable
patterns to reliably develop and deploy production-quality microservices-based applications. This
invaluable set of design patterns builds on decades of distributed system experience, adding new
patterns for composing services into systems that scale and perform under real-world conditions.
More than just a patterns catalog, this practical guide with worked examples offers industry-tested
advice to help you design, implement, test, and deploy your microservices-based application. What
You Will Learn How (and why!) to use microservices architecture Service decomposition strategies
Transaction management and querying patterns Effective testing strategies Deployment patterns
This Book Is Written For Written for enterprise developers familiar with standard enterprise
application architecture. Examples are in Java. About The Author Chris Richardson is a Java
Champion, a JavaOne rock star, author of Manning’s POJOs in Action, and creator of the original
CloudFoundry.com. Table of Contents Escaping monolithic hell Decomposition strategies
Interprocess communication in a microservice architecture Managing transactions with sagas
Designing business logic in a microservice architecture Developing business logic with event
sourcing Implementing queries in a microservice architecture External API patterns Testing
microservices: part 1 Testing microservices: part 2 Developing production-ready services Deploying
microservices Refactoring to microservices
  hexagonal architecture vs microservices: Microservices Eberhard Wolff, 2016-10-03 The
Most Complete, Practical, and Actionable Guide to Microservices Going beyond mere theory and
marketing hype, Eberhard Wolff presents all the knowledge you need to capture the full benefits of
this emerging paradigm. He illuminates microservice concepts, architectures, and scenarios from a
technology-neutral standpoint, and demonstrates how to implement them with today’s leading



technologies such as Docker, Java, Spring Boot, the Netflix stack, and Spring Cloud. The author fully
explains the benefits and tradeoffs associated with microservices, and guides you through the entire
project lifecycle: development, testing, deployment, operations, and more. You’ll find best practices
for architecting microservice-based systems, individual microservices, and nanoservices, each
illuminated with pragmatic examples. The author supplements opinions based on his experience with
concise essays from other experts, enriching your understanding and illuminating areas where
experts disagree. Readers are challenged to experiment on their own the concepts explained in the
book to gain hands-on experience. Discover what microservices are, and how they differ from other
forms of modularization Modernize legacy applications and efficiently build new systems Drive more
value from continuous delivery with microservices Learn how microservices differ from SOA
Optimize the microservices project lifecycle Plan, visualize, manage, and evolve architecture
Integrate and communicate among microservices Apply advanced architectural techniques,
including CQRS and Event Sourcing Maximize resilience and stability Operate and monitor
microservices in production Build a full implementation with Docker, Java, Spring Boot, the Netflix
stack, and Spring Cloud Explore nanoservices with Amazon Lambda, OSGi, Java EE, Vert.x, Erlang,
and Seneca Understand microservices’ impact on teams, technical leaders, product owners, and
stakeholders Managers will discover better ways to support microservices, and learn how adopting
the method affects the entire organization. Developers will master the technical skills and concepts
they need to be effective. Architects will gain a deep understanding of key issues in creating or
migrating toward microservices, and exactly what it will take to transform their plans into reality.
  hexagonal architecture vs microservices: Fundamentals of Software Architecture Craig
Risi, 2025-05-30 DESCRIPTION With the rising complexity of modern software systems, strong,
scalable software architecture has become the backbone of any successful application. This book
gives you the essential knowledge to grasp the core ideas and methods of effective software design,
helping you build strong, flexible systems right from the start. The book systematically navigates the
critical aspects of software architecture, commencing with a clear definition of its significance and
the pivotal role of the software architect. It delves into fundamental architectural properties like
performance, security, and maintainability, underscoring the importance of modularity in crafting
well-structured systems. You will explore various established architectural styles, including
microservices and layered architecture, alongside key design patterns such as MVC and repository,
gaining insights into their practical application. The book further elucidates the function of software
components, the art of architecting for optimal performance and security, and essential design
principles for building robust solutions. Finally, it examines the impact of modern development
practices (Agile, DevOps), positions architecture within the broader engineering context, emphasizes
the importance of testing at the architectural level, and offers a glimpse into current and future
trends shaping the field. By the end of this book, you will have a solid understanding of the core
concepts, helping you to contribute effectively to software design discussions, make informed
architectural decisions, and build a strong foundation for creating high-quality, future-proof software
systems. WHAT YOU WILL LEARN ● Define core architecture, architect roles, and fundamental
design attributes. ● Apply modularity principles for resilient and adaptable software design. ●
Design cohesive components, manage coupling, and optimize system decomposition. ● Cultivate
essential soft skills for effective leadership and stakeholder management. ● Define technical
requirements and understand modern development practices. WHO THIS BOOK IS FOR This book is
for software developers, technical leads, and anyone involved in software creation, seeking a
foundational understanding of software architecture principles and practices to enhance their design
skills and project outcomes. TABLE OF CONTENTS Prologue 1. Defining Software Architecture 2.
The Role of a Software Architect 3. Architectural Properties 4. The Importance of Modularity 5.
Architectural Styles 6. Architectural Patterns 7. Component Architecture 8. Architecting for
Performance 9. Architecting for Security 10. Design and Presentation 11. Evolutionary Architecture
12. Soft Skills for Software Architects 13. Writing Technical Requirements 14. Development
Practices 15. Architecture as Engineering 16. Testing in Software Architecture 17. Current and



Future Trends in Software 18. Synthesizing Architectural Principles Appendix
  hexagonal architecture vs microservices: gRPC Microservices in Go Hüseyin Babal,
2024-01-09 Build super fast and super secure microservices with the gRPC high-performance
messaging protocol and powerful Go language. In gRPC Microservices in Go you’ll learn: Designing
and implementing resilient microservice architecture Testing microservices Deploying microservices
to the cloud with modern orchestration tools Monitoring and overseeing microservices The powerful
gRPC Remote Procedure Call framework delivers superior speed and security over protocols like
REST. When paired with Golang’s low-level efficiency and flexibility, gRPC and Go become a killer
combination for latency-sensitive microservices applications. gRPC Microservices in Go shows you
how to utilize these powerful tools to build production-grade microservices. You’ll learn to develop
microservice inter-service communication patterns that are powered by gRPC, design backward
compatible APIs, and apply hexagonal architecture to microservices. About the technology Go is
perfect for writing fast, reliable microservices code, but that’s only half the story. You also need a
communications framework like gRPC to connect your services and handle load balancing, tracing,
health checking, and authentication. Together, Go and gRPC accelerate the development process
and eliminate many of the challenges you face when building and deploying microservices. About the
book gRPC Microservices in Go teaches you how to build production-ready microservices using Go
and gRPC. In it, you’ll learn to create efficient APIs in Go, use gRPC for network communication, and
deploy on cloud and Kubernetes. Helpful examples, including a complete eCommerce web app, make
it easy to grasp each concept. You’ll also get an inside look at testing, deployment, and efficient
DevOps practices for microservices. What's inside Designing and implementing resilient
microservice architecture Testing microservices Cloud deploying microservices with orchestration
tools Monitoring and overseeing microservices About the reader For software developers who know
the basics of Go. About the author Hüseyin Babal has been using Go in production since 2017 to
build and maintain SaaS platforms. Table of Contents PART 1 - GRPC AND MICROSERVICES
ARCHITECTURE 1 Introduction to Go gRPC microservices 2 gRPC meets microservices PART 2 -
DEVELOPING, TESTING, AND DEPLOYING A GRPC MICROSERVICE APPLICATION 3 Getting up
and running with gRPC and Golang 4 Microservice project setup 5 Interservice communication 6
Resilient communication 7 Testing microservices 8 Deployment PART 3 - GRPC AND
MICROSERVICES ARCHITECTURE 9 Observability
  hexagonal architecture vs microservices: Mastering API Architecture James Gough,
Daniel Bryant, Matthew Auburn, 2021-03-19 Most organizations with a web presence build and
operate APIs; the doorway for customers to interact with the company's services. Designing,
building, and managing these critical programs affect everyone in the organization, from engineers
and product owners to C-suite executives. But the real challenge for developers and solution
architects is creating an API platform from the ground up. With this practical book, you'll learn
strategies for building and testing REST APIs that use API gateways to combine offerings at the
microservice level. Authors James Gough, Daniel Bryant, and Matthew Auburn demonstrate how
simple additions to this infrastructure can help engineers and organizations migrate to the cloud;
and open the opportunity to connect internal services using technologies like a service mesh. Learn
API fundamentals and architectural patterns for building an API platform Use practical examples to
understand how to design, build, and test API-based systems Deploy, operate, and configure key
components of an API platform Use API gateways and service meshes appropriately, based on case
studies Understand core security and common vulnerabilities in API architecture Secure data and
APIs using threat modeling and technologies like OAuth2 and TLS Learn how to evolve existing
systems toward API- and cloud-based architectures
  hexagonal architecture vs microservices: Docker: Zero To Hero Rob Botwright, 2024 �
DOCKER: ZERO TO HERO BOOK BUNDLE � Ready to level up your Docker skills and become a
containerization pro? Look no further! Introducing the Docker: Zero to Hero book bundle, your
ultimate guide to building, testing, and deploying applications fast. With four comprehensive books
covering everything from Docker basics to expert-level techniques, this bundle has everything you



need to master Docker and revolutionize your development workflow. � BOOK 1: DOCKER
DEMYSTIFIED � New to Docker? No problem! Dive into the world of containerization with Docker
Demystified, a beginner's guide that breaks down complex concepts into easy-to-understand lessons.
Learn how Docker works, create and manage containers, and discover the power of containerization
for modern software development. � BOOK 2: MASTERING DOCKER � Ready to take your Docker
skills to the next level? Mastering Docker is your roadmap to advanced techniques and best
practices. Optimize Docker images, implement networking and storage solutions, and orchestrate
multi-container applications with Docker Compose. Whether you're deploying in the cloud or
on-premises, this book has you covered. � BOOK 3: DOCKER DEPLOYMENT STRATEGIES � Scaling
and orchestrating containers at scale is a breeze with Docker Deployment Strategies. Explore
different deployment strategies, from setting up Docker Swarm clusters to rolling updates and
service scaling. Plus, learn advanced networking and security considerations for deploying Docker in
production environments. � BOOK 4: EXPERT DOCKER � Ready to become a Docker expert? Expert
Docker is your guide to building complex microservices architectures with confidence. Architect and
deploy sophisticated, distributed systems using Docker, and design scalable, resilient, and
maintainable microservices architectures that stand the test of time. With over 3000 characters of
expert guidance and practical advice, the Docker: Zero to Hero book bundle is your ticket to
mastering Docker and transforming your development workflow. Don't miss out on this opportunity
to become a Docker hero – grab your bundle today and start building, testing, and deploying
applications faster than ever before! ��
  hexagonal architecture vs microservices: Fundamentals of Software Architecture Mark
Richards, Neal Ford, 2025-03-12 Salary surveys worldwide regularly place software architect in the
top 10 best jobs, yet no real guide exists to help developers become architects. Until now. This
updated edition provides a comprehensive overview of software architecture's many aspects, with
five new chapters covering the latest insights from the field. Aspiring and existing architects alike
will examine architectural characteristics, architectural patterns, component determination,
diagramming architecture, governance, data, generative AI, team topologies, and many other topics.
Mark Richards and Neal Ford—hands-on practitioners who have taught software architecture
classes professionally for years—focus on architecture principles that apply across all technology
stacks. You'll explore software architecture in a modern light, taking into account all the innovations
of the past decade. This book examines: Architecture styles and patterns: Microservices, modular
monoliths, microkernels, layered architectures, and many more Components: Identification,
coupling, cohesion, partitioning, and granularity Soft skills: Effective team management,
collaboration, business engagement models, negotiation, presentations, and more Modernity:
Engineering practices and operational approaches that have changed radically in the past few years,
including cloud considerations and generative AI Architecture as an engineering discipline:
Repeatable results, metrics, and concrete valuations that add rigor to software architecture
  hexagonal architecture vs microservices: Kubernetes Patterns Bilgin Ibryam, Roland Huss,
2022-09-01 The way developers design, build, and run software has changed significantly with the
evolution of microservices and containers. These modern architectures offer new distributed
primitives that require a different set of practices than many developers, tech leads, and architects
are accustomed to. With this focused guide, Bilgin Ibryam and Roland Huss provide common
reusable patterns and principles for designing and implementing cloud native applications on
Kubernetes. Each pattern includes a description of the problem and a Kubernetes-specific solution.
All patterns are backed by and demonstrated with concrete code examples. This updated edition is
ideal for developers and architects familiar with basic Kubernetes concepts who want to learn how
to solve common cloud native challenges with proven design patterns. You'll explore: Foundational
patterns covering core principles and practices for building and running container-based cloud
native applications Behavioral patterns that delve into finer-grained concepts for managing various
types of container and platform interactions Structural patterns for organizing containers within a
Pod for addressing specific use cases Configuration patterns that provide insight into how



application configurations can be handled in Kubernetes Security patterns for hardening the access
to cloud native applications running on KubernetesAdvanced patterns covering more complex topics
such as operators and autoscaling
  hexagonal architecture vs microservices: Software Architecture: The Hard Parts Neal
Ford, Mark Richards, Pramod Sadalage, Zhamak Dehghani, 2021-09-23 There are no easy decisions
in software architecture. Instead, there are many hard parts--difficult problems or issues with no
best practices--that force you to choose among various compromises. With this book, you'll learn
how to think critically about the trade-offs involved with distributed architectures. Architecture
veterans and practicing consultants Neal Ford, Mark Richards, Pramod Sadalage, and Zhamak
Dehghani discuss strategies for choosing an appropriate architecture. By interweaving a story about
a fictional group of technology professionals--the Sysops Squad--they examine everything from how
to determine service granularity, manage workflows and orchestration, manage and decouple
contracts, and manage distributed transactions to how to optimize operational characteristics, such
as scalability, elasticity, and performance. By focusing on commonly asked questions, this book
provides techniques to help you discover and weigh the trade-offs as you confront the issues you
face as an architect. Analyze trade-offs and effectively document your decisions Make better
decisions regarding service granularity Understand the complexities of breaking apart monolithic
applications Manage and decouple contracts between services Handle data in a highly distributed
architecture Learn patterns to manage workflow and transactions when breaking apart applications
  hexagonal architecture vs microservices: Java EE 8 Design Patterns and Best Practices
Rhuan Rocha, João Purificação, 2018-08-10 Get the deep insights you need to master efficient
architectural design considerations and solve common design problems in your enterprise
applications. Key Features The benefits and applicability of using different design patterns in JAVA
EE Learn best practices to solve common design and architectural challenges Choose the right
patterns to improve the efficiency of your programs Book Description Patterns are essential design
tools for Java developers. Java EE Design Patterns and Best Practices helps developers attain better
code quality and progress to higher levels of architectural creativity by examining the purpose of
each available pattern and demonstrating its implementation with various code examples. This book
will take you through a number of patterns and their Java EE-specific implementations. In the
beginning, you will learn the foundation for, and importance of, design patterns in Java EE, and then
will move on to implement various patterns on the presentation tier, business tier, and integration
tier. Further, you will explore the patterns involved in Aspect-Oriented Programming (AOP) and take
a closer look at reactive patterns. Moving on, you will be introduced to modern architectural
patterns involved in composing microservices and cloud-native applications. You will get acquainted
with security patterns and operational patterns involved in scaling and monitoring, along with some
patterns involved in deployment. By the end of the book, you will be able to efficiently address
common problems faced when developing applications and will be comfortable working on scalable
and maintainable projects of any size. What you will learn Implement presentation layers, such as
the front controller pattern Understand the business tier and implement the business delegate
pattern Master the implementation of AOP Get involved with asynchronous EJB methods and REST
services Involve key patterns in the adoption of microservices architecture Manage performance and
scalability for enterprise-level applications Who this book is for Java developers who are comfortable
with programming in Java and now want to learn how to implement design patterns to create robust,
reusable and easily maintainable apps.
  hexagonal architecture vs microservices: Designing Hexagonal Architecture with Java Davi
Vieira, 2023-09-29 Learn to build robust, resilient, and highly maintainable cloud-native Java
applications with hexagonal architecture and Quarkus Key Features Use hexagonal architecture to
increase maintainability and reduce technical debt Learn how to build systems that are easy to
change and understand Leverage Quarkus to create modern cloud-native applications Purchase of
the print or Kindle book includes a free PDF eBook Book DescriptionWe live in a fast-evolving world
with new technologies emerging every day, where enterprises are constantly changing in an



unending quest to be more profitable. So, the question arises — how to develop software capable of
handling a high level of unpredictability. With this question in mind, this book explores how the
hexagonal architecture can help build robust, change-tolerable, maintainable, and cloud-native
applications that can meet the needs of enterprises seeking to increase their profits while dealing
with uncertainties. This book starts by uncovering the secrets of the hexagonal architecture’s
building blocks, such as entities, use cases, ports, and adapters. You’ll learn how to assemble
business code in the domain hexagon, create features with ports and use cases in the application
hexagon, and make your software compatible with different technologies by employing adapters in
the framework hexagon. In this new edition, you’ll learn about the differences between a hexagonal
and layered architecture and how to apply SOLID principles while developing a hexagonal system
based on a real-world scenario. Finally, you’ll get to grips with using Quarkus to turn your hexagonal
application into a cloud-native system. By the end of this book, you’ll be able to develop robust,
flexible, and maintainable systems that will stand the test of time.What you will learn Apply SOLID
principles to the hexagonal architecture Assemble business rules algorithms using the specified
design pattern Combine domain-driven design techniques with hexagonal principles to create
powerful domain models Employ adapters to enable system compatibility with various protocols such
as REST, gRPC, and WebSocket Create a module and package structure based on hexagonal
principles Use Java modules to enforce dependency inversion and ensure software component
isolation Implement Quarkus DI to manage the life cycle of input and output ports Who this book is
forThis book is for software architects and Java developers looking to improve code maintainability
and enhance productivity with an architecture that allows changes in technology without
compromising business logic. Intermediate knowledge of the Java programming language and
familiarity with Jakarta EE will help you to get the most out of this book.
  hexagonal architecture vs microservices: Domain-driven Design with Java Otavio
Santana, 2025-09-22 DESCRIPTION Domain-driven Design (DDD) continues to shape how modern
software systems are built by bridging the gap between technical teams and business needs. Its
emphasis on modeling the domain with precision and clarity is especially relevant in today’s
fast-paced, complex software landscape. This book begins with DDD fundamentals, including core
principles, a shared language, and the distinction between strategic and tactical approaches,
progressing to strategic concepts like bounded contexts, context mapping, and domain events. It
explores the tactical Java implementation detailing entities, value objects, services, aggregates, and
repositories. The book also explores testing strategies and architectural validation using
ArchUnit/jMolecules. Further, it explores DDD across microservices, monoliths, and distributed
systems, integrating with Clean Architecture and SQL/NoSQL data modeling to prevent impedance
mismatch. It thoroughly covers applying DDD within Jakarta EE, Spring, Eclipse MicroProfile, and
Quarkus. By the end, you will be equipped to model business logic more effectively, design systems
that reflect real-world domains, and integrate DDD seamlessly into enterprise applications. You will
gain clarity, confidence, and the tools needed to build software that delivers business value. WHAT
YOU WILL LEARN ● Apply DDD from strategic to tactical design. ● Model aggregates, entities, and
value objects in Java. ● Use DDD in monoliths, microservices, and distributed systems. ● Integrate
DDD with Spring and Jakarta EE frameworks. ● Apply Clean Architecture principles alongside DDD.
● Structure data modeling for SQL and NoSQL systems. ● Apply bounded contexts, context
mapping, and domain events for architecture. ● Unit/integration testing, validate design with
ArchUnit/jMolecules. ● Build responsive microservices with Quarkus extensions, reactive
programming. WHO THIS BOOK IS FOR This book is ideal for Java developers, software architects,
tech leads, and backend engineers. It is especially valuable for professionals designing scalable
enterprise systems or applying DDD in modern software architecture. TABLE OF CONTENTS 1.
Understanding Domain-driven Design 2. Strategic DDD Concepts 3. Tactical DDD Implementation 4.
Testing and Validating DDD Applications 5. DDD in Microservices, Monoliths, and Distributed
Systems 6. Integrating DDD with Clean Architecture 7. DDD and Data Modeling 8. Enterprise Java
with Jakarta EE 9. Enterprise Java with Spring 10. Eclipse MicroProfile and Domain-driven Design



11. Quarkus and Domain-driven Design 12. Code Design and Best Practices for DDD 13. Final
Considerations
  hexagonal architecture vs microservices: A Journey Towards Bio-inspired Techniques in
Software Engineering Jagannath Singh, Saurabh Bilgaiyan, Bhabani Shankar Prasad Mishra,
Satchidananda Dehuri, 2020-03-11 This book covers a range of basic and advanced topics in
software engineering. The field has undergone several phases of change and improvement since its
invention, and there is significant ongoing research in software development, addressing aspects
such as analysis, design, testing and maintenance. Rather than focusing on a single aspect of
software engineering, this book provides a systematic overview of recent techniques, including
requirement gathering in the form of story points in agile software, and bio-inspired techniques for
estimating the effort, cost, and time required for software development. As such it is a valuable
resource for new researchers interested in advances in software engineering — particularly in the
area of bio-inspired techniques.
  hexagonal architecture vs microservices: Software Architecture with Kotlin Jason (Tsz Shun)
Chow, 2024-12-31 Develop innovative architectural styles by analyzing and merging various
approaches, focusing on making trade-offs and mitigating risks to solve real-world problems Key
Features Learn how to analyze and dissect various architectural styles into building blocks Combine
existing ideas with your own to create custom solutions Make informed decisions by navigating
trade-offs and compromises Purchase of the print or Kindle book includes a free PDF eBook Book
DescriptionSoftware Architecture with Kotlin explores the various styles of software architecture
with a focus on using the Kotlin programming language. The author draws on their 20+ years of
industry experience in developing large-scale enterprise distributed systems to help you grasp the
principles, practices, and patterns that shape the architectural landscape of modern software
systems. The book establishes a strong foundation in software architecture, explaining key concepts
such as architectural qualities and principles, before teaching you how architectural decisions
impact the quality of a system, such as scalability, reliability, and extendability. The chapters
address modern architecture topics such as microservices, serverless, and event-driven
architectures, providing insights into the challenges and trade-offs involved in adopting these
architectural styles. You’ll also discover practical tools that’ll help you make informed decisions and
mitigate risks. All architectural patterns in this book are demonstrated using Kotlin. By the end of
this book, you’ll have gained practical expertise by using real-world examples, along with a solid
understanding of Kotlin, to become a more proficient and impactful software architect.What you will
learn Master the fundamental principles of architecture and design Explore common architectural
styles and their applicable scenarios Analyze, break down, compare, and design architectural styles
to solve practical problems Reason, negotiate, and make difficult choices in the absence of ideal
solutions Mitigate risks when making compromises and trade-offs Create scalable, sustainable,
maintainable, and extendable software systems Use the Kotlin programming language to achieve
your architectural goals Who this book is for This book is for developers with basic Kotlin knowledge
seeking a deeper understanding of architecture, Kotlin Android developers who are starting to get
involved in backend development, and Java developers transitioning to Kotlin. It's also ideal for
software architects who are less experienced in Kotlin and want to enhance their skills, as well as
those who enjoy discussing and exploring unique architectural concepts.
  hexagonal architecture vs microservices: Clean Architecture with .NET Dino Esposito,
2024-03-12 Understand what to do at any point in developing a clean .NET architecture Master
advanced .NET techniques with a focus on actual value delivered by working within a modular, clean
architecture. Microsoft Data Platform MVP Dino Esposito explains key clean architecture concepts
with a mix of pragmatism and design discipline and helps you solidify your knowledge through a
real-world project. Starting with an explanation of the quest for modular software architecture
continuing through the methodology of domain-driven design (DDD), Esposito emphasizes the role
that modularization plays in managing complexity in software development. Breaking down the
layers of an architecture that is modular and maintainable, he presents a sample project that is not



simply another to-do list, but an actual tool for the reader. Ultimately, an exploration of common
dilemmas for both developers and operations brings together historical developments with real
solutions for today. Microsoft Data Platform MVP Dino Esposito helps you: · Understand the
relevance of modular software architecture in the history of software · Review domain-driven design
concepts both, strategic and practical · Apply modular analysis techniques to your development ·
Make the most of layered architecture · Make the most of layered architecture that is modular and
maintainable · Explore in detail the individual layers—presentation, application, domain and
infrastructure · Make sense of domain services to separate raw persistence from persistence-related
business tasks · Make your way through a series of C# best-practices for modeling classes from
real-world entities · Understand the benefits of microservices versus modular monoliths ·
Understand the analysis of technical shortcuts and benefits of long-term technical investment ·
Understand client-side, server-side and other common deployment dilemmas · Set up your
architecture, test your conclusions, and find even more help
  hexagonal architecture vs microservices: Serverless Development on AWS Sheen Brisals,
Luke Hedger, 2024-01-23 The adoption of serverless is on the rise, but until now, little guidance has
been available for development teams that want to apply this technology on AWS. This definitive
guide is packed with architectural, security, and data best practices and patterns for architects and
engineers who want to build reliable enterprise-scale serverless solutions. Sheen Brisals, an AWS
Serverless Hero, and Luke Hedger, an AWS Community Builder, outline the serverless adoption
requirements for an enterprise, examine the development tools your team needs, and explain in
depth the nuances of testing event-driven and distributed serverless services. You'll gain practical
guidance for keeping up with change and learn how to build serverless solutions with sustainability
in mind. Examine the serverless technology ecosystem and AWS services needed to develop
serverless applications Learn the approach and preparation required for a successful serverless
adoption in an enterprise Learn serverless architectures and implementation patterns Design,
develop, and test distributed serverless microservices on AWS cloud Apply security best practices
while building serverless solutions Identify and adapt the implementation patterns for your
particular use case Incorporate the necessary measures for observable serverless applications
Implement sustainable serverless applications in the cloud
  hexagonal architecture vs microservices: Port for Microservices Developers William Smith,
2025-08-19 Port for Microservices Developers Port for Microservices Developers is an authoritative
guide to mastering the Port and Adapter (Hexagonal) Architecture and its vital role in building
robust, scalable microservices ecosystems. Designed for professionals and architects seeking clarity
and best practices, this book explores the fundamental concepts and evolution of port-centric design.
Readers are guided from the origins and core principles of ports and adapters through advanced
comparisons with layered and clean architectures, ensuring a deep understanding of how to apply
these concepts effectively in distributed, business-critical systems. The book excels in bridging
theory and real-world execution by providing practical approaches for defining ports in
microservices, implementing adapters with modern frameworks, and integrating enterprise patterns
such as orchestration, choreography, and anti-corruption layers. Security is addressed in depth,
offering thorough models and techniques for authentication, authorization, data validation, incident
response, and compliance. Readers will also learn how port abstractions empower rigorous testing,
continuous delivery, observability, and troubleshooting—critical needs for modern DevOps pipelines
and production environments. Going beyond foundational knowledge, Port for Microservices
Developers addresses the challenges of polyglot persistence, interoperability, dynamic configuration,
and scaling in distributed contexts. A strategic perspective is offered for evolving legacy
applications, governing cross-organizational ports, and adapting to future industry standards. Rich
with examples, actionable patterns, and forward-looking insights, this book is an indispensable
companion for advancing both the technical excellence and business agility of microservices teams.



Related to hexagonal architecture vs microservices
Hexagon - Wikipedia From bees' honeycombs to the Giant's Causeway, hexagonal patterns are
prevalent in nature due to their efficiency. In a hexagonal grid each line is as short as it can possibly
be if a large area
HEXAGONAL Definition & Meaning - Merriam-Webster The meaning of HEXAGONAL is having
six angles and six sides. How to use hexagonal in a sentence
HEXAGONAL | definition in the Cambridge English Dictionary Instead, they'll see a colorful
geometric shape -- hexagonal if they drive, circular if they're a rider -- surrounding a small, bit-like
square
Hexagon - Math is Fun A hexagon is a 6-sided polygon (a flat shape with straight sides): Soap
bubbles tend to form hexagons when they join up
HEXAGONAL Definition & Meaning | Hexagonal definition: of, relating to, or having the form of a
hexagon.. See examples of HEXAGONAL used in a sentence
HEXAGONAL definition and meaning | Collins English Dictionary A hexagonal object or shape
has six straight sides. The rigs will be unmanned and comprise several hexagonal platforms. Collins
COBUILD Advanced Learner’s Dictionary. Copyright ©
Hexagonal - definition of hexagonal by The Free Dictionary 1. Having six sides. 2. Relating to a
crystal having three axes of equal length intersecting at angles of 60° in one plane, and a fourth axis
of a different length that is perpendicular to this
Hexagon - Wikipedia From bees' honeycombs to the Giant's Causeway, hexagonal patterns are
prevalent in nature due to their efficiency. In a hexagonal grid each line is as short as it can possibly
be if a large area
HEXAGONAL Definition & Meaning - Merriam-Webster The meaning of HEXAGONAL is having
six angles and six sides. How to use hexagonal in a sentence
HEXAGONAL | definition in the Cambridge English Dictionary Instead, they'll see a colorful
geometric shape -- hexagonal if they drive, circular if they're a rider -- surrounding a small, bit-like
square
Hexagon - Math is Fun A hexagon is a 6-sided polygon (a flat shape with straight sides): Soap
bubbles tend to form hexagons when they join up
HEXAGONAL Definition & Meaning | Hexagonal definition: of, relating to, or having the form of a
hexagon.. See examples of HEXAGONAL used in a sentence
HEXAGONAL definition and meaning | Collins English Dictionary A hexagonal object or shape
has six straight sides. The rigs will be unmanned and comprise several hexagonal platforms. Collins
COBUILD Advanced Learner’s Dictionary. Copyright ©
Hexagonal - definition of hexagonal by The Free Dictionary 1. Having six sides. 2. Relating to a
crystal having three axes of equal length intersecting at angles of 60° in one plane, and a fourth axis
of a different length that is perpendicular to this
Hexagon - Wikipedia From bees' honeycombs to the Giant's Causeway, hexagonal patterns are
prevalent in nature due to their efficiency. In a hexagonal grid each line is as short as it can possibly
be if a large area
HEXAGONAL Definition & Meaning - Merriam-Webster The meaning of HEXAGONAL is having
six angles and six sides. How to use hexagonal in a sentence
HEXAGONAL | definition in the Cambridge English Dictionary Instead, they'll see a colorful
geometric shape -- hexagonal if they drive, circular if they're a rider -- surrounding a small, bit-like
square
Hexagon - Math is Fun A hexagon is a 6-sided polygon (a flat shape with straight sides): Soap
bubbles tend to form hexagons when they join up
HEXAGONAL Definition & Meaning | Hexagonal definition: of, relating to, or having the form of a
hexagon.. See examples of HEXAGONAL used in a sentence
HEXAGONAL definition and meaning | Collins English Dictionary A hexagonal object or shape



has six straight sides. The rigs will be unmanned and comprise several hexagonal platforms. Collins
COBUILD Advanced Learner’s Dictionary. Copyright ©
Hexagonal - definition of hexagonal by The Free Dictionary 1. Having six sides. 2. Relating to a
crystal having three axes of equal length intersecting at angles of 60° in one plane, and a fourth axis
of a different length that is perpendicular to this
Hexagon - Wikipedia From bees' honeycombs to the Giant's Causeway, hexagonal patterns are
prevalent in nature due to their efficiency. In a hexagonal grid each line is as short as it can possibly
be if a large area
HEXAGONAL Definition & Meaning - Merriam-Webster The meaning of HEXAGONAL is having
six angles and six sides. How to use hexagonal in a sentence
HEXAGONAL | definition in the Cambridge English Dictionary Instead, they'll see a colorful
geometric shape -- hexagonal if they drive, circular if they're a rider -- surrounding a small, bit-like
square
Hexagon - Math is Fun A hexagon is a 6-sided polygon (a flat shape with straight sides): Soap
bubbles tend to form hexagons when they join up
HEXAGONAL Definition & Meaning | Hexagonal definition: of, relating to, or having the form of a
hexagon.. See examples of HEXAGONAL used in a sentence
HEXAGONAL definition and meaning | Collins English Dictionary A hexagonal object or shape
has six straight sides. The rigs will be unmanned and comprise several hexagonal platforms. Collins
COBUILD Advanced Learner’s Dictionary. Copyright ©
Hexagonal - definition of hexagonal by The Free Dictionary 1. Having six sides. 2. Relating to a
crystal having three axes of equal length intersecting at angles of 60° in one plane, and a fourth axis
of a different length that is perpendicular to this
Hexagon - Wikipedia From bees' honeycombs to the Giant's Causeway, hexagonal patterns are
prevalent in nature due to their efficiency. In a hexagonal grid each line is as short as it can possibly
be if a large area
HEXAGONAL Definition & Meaning - Merriam-Webster The meaning of HEXAGONAL is having
six angles and six sides. How to use hexagonal in a sentence
HEXAGONAL | definition in the Cambridge English Dictionary Instead, they'll see a colorful
geometric shape -- hexagonal if they drive, circular if they're a rider -- surrounding a small, bit-like
square
Hexagon - Math is Fun A hexagon is a 6-sided polygon (a flat shape with straight sides): Soap
bubbles tend to form hexagons when they join up
HEXAGONAL Definition & Meaning | Hexagonal definition: of, relating to, or having the form of a
hexagon.. See examples of HEXAGONAL used in a sentence
HEXAGONAL definition and meaning | Collins English Dictionary A hexagonal object or shape
has six straight sides. The rigs will be unmanned and comprise several hexagonal platforms. Collins
COBUILD Advanced Learner’s Dictionary. Copyright ©
Hexagonal - definition of hexagonal by The Free Dictionary 1. Having six sides. 2. Relating to a
crystal having three axes of equal length intersecting at angles of 60° in one plane, and a fourth axis
of a different length that is perpendicular to this

Related to hexagonal architecture vs microservices
From Service-Oriented Architecture to Microservices (CMS Wire5y) Designing our applications
as small independent units is the first step towards building a modern infrastructure that is nimble,
agile and scalable. Legacy systems still form the backbone of many
From Service-Oriented Architecture to Microservices (CMS Wire5y) Designing our applications
as small independent units is the first step towards building a modern infrastructure that is nimble,
agile and scalable. Legacy systems still form the backbone of many
Beyond The Architecture Cage Match: How The Microservices Vs. Monoliths Debate Is



Damaging Your Business (Forbes4mon) In the red corner, weighing in with independent
scalability and distributed complexity: microservices! In the blue corner, the reigning legacy
champion, with its infamous deployment challenges: the
Beyond The Architecture Cage Match: How The Microservices Vs. Monoliths Debate Is
Damaging Your Business (Forbes4mon) In the red corner, weighing in with independent
scalability and distributed complexity: microservices! In the blue corner, the reigning legacy
champion, with its infamous deployment challenges: the
Microservices 101: A guide to microservice architecture (ZDNet5y) The idea behind
microservices and a microservices architecture is relatively simple: hide all the complexities of
hardware, operating systems, and different development toolkits behind a standard
Microservices 101: A guide to microservice architecture (ZDNet5y) The idea behind
microservices and a microservices architecture is relatively simple: hide all the complexities of
hardware, operating systems, and different development toolkits behind a standard
The downsides of microservices architecture (InfoWorld2y) Microservices came in with a great
deal of momentum a few years ago, but now we’re seeing their drawbacks for applications on cloud
platforms. A microservices architecture for application development
The downsides of microservices architecture (InfoWorld2y) Microservices came in with a great
deal of momentum a few years ago, but now we’re seeing their drawbacks for applications on cloud
platforms. A microservices architecture for application development
Why microservices need event-driven architecture (ZDNet3y) Microservices promise to help
break down monolithic applications and enable the consistent delivery of services. But they can't do
the job without help. This is where event-driven architecture (EDA)
Why microservices need event-driven architecture (ZDNet3y) Microservices promise to help
break down monolithic applications and enable the consistent delivery of services. But they can't do
the job without help. This is where event-driven architecture (EDA)
What are Microservices and Can this Architecture Improve Your Application Development?
(CMS Wire7y) Big brands like Amazon and Netflix are embracing microservice architecture, but
what is it, and how does it fit into application and software development? The software products we
use every day for
What are Microservices and Can this Architecture Improve Your Application Development?
(CMS Wire7y) Big brands like Amazon and Netflix are embracing microservice architecture, but
what is it, and how does it fit into application and software development? The software products we
use every day for

Back to Home: http://www.speargroupllc.com

http://www.speargroupllc.com

