
proof of fundamental theorem of
calculus
proof of fundamental theorem of calculus serves as a cornerstone in the field of
mathematics, bridging the concepts of differentiation and integration. This fundamental
theorem not only provides a way to evaluate definite integrals but also highlights the
profound relationship between the two operations. In this article, we will delve deeply into
the proof of the fundamental theorem of calculus, exploring its two main parts, the
significance of the theorem, and applications in various fields. We aim to provide a
comprehensive understanding of why this theorem is pivotal in both theoretical and applied
mathematics.

We will begin with an overview of the theorem itself, followed by a detailed proof of both
parts, and conclude with its applications and significance. This structured approach will
equip readers with both the theoretical background and practical insights regarding the
fundamental theorem of calculus.
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Introduction to the Fundamental Theorem of
Calculus

The fundamental theorem of calculus establishes a powerful connection between
differentiation and integration. It is divided into two main parts: the first part relates the
concept of the derivative of a function to its integral, while the second part provides a
method to compute definite integrals. This theorem is essential for understanding the
behavior of functions and serves as a foundational principle in mathematical analysis,
applied mathematics, and various scientific disciplines.



To fully grasp the implications of the theorem, it is crucial to understand the definitions of
integrals and derivatives, as well as the conditions under which the theorem holds. The
theorem's implications extend far beyond pure mathematics, influencing fields such as
physics, engineering, and economics.

Statement of the Theorem

The fundamental theorem of calculus can be stated in two parts:

Part 1

Part 1 states that if \( f \) is a continuous real-valued function defined on the interval \([a,
b]\), and \( F \) is an antiderivative of \( f \) on that interval, then:

\[
\int_a^b f(x) \, dx = F(b) - F(a)
\]

This part emphasizes that the definite integral of a function can be computed using its
antiderivative.

Part 2

Part 2 states that if \( f \) is a real-valued function on an interval \([a, b]\) and \( f \) is
integrable on \([a, b]\), then the function \( F \) defined by the integral:

\[
F(x) = \int_a^x f(t) \, dt
\]

is continuous on \([a, b]\), and differentiable on \((a, b)\), with \( F'(x) = f(x) \) for all \( x \) in
\((a, b)\). This shows that differentiation and integration are inverse processes.

Proof of the Fundamental Theorem of Calculus

The proof of the fundamental theorem of calculus is crucial for understanding its validity
and applications. We will break down the proof into two parts.

Proof of Part 1

To prove Part 1, we start with a continuous function \( f \) defined on the interval \([a, b]\).



We define the function \( F(x) = \int_a^x f(t) \, dt \). By the definition of the definite integral,
\( F \) is well-defined for all \( x \) in \([a, b]\).

Next, we show that \( F \) is differentiable and that its derivative is \( f \). According to the
definition of the derivative, we have:

\[
F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}
\]

This can be rewritten as:

\[
F'(x) = \lim_{h \to 0} \frac{\int_a^{x+h} f(t) \, dt - \int_a^x f(t) \, dt}{h}
\]

By the properties of integrals, we can express this as:

\[
F'(x) = \lim_{h \to 0} \frac{\int_x^{x+h} f(t) \, dt}{h}
\]

For small \( h \), since \( f \) is continuous, it approaches \( f(x) \) as \( h \) approaches \( 0 \).
Thus, we can approximate:

\[
\int_x^{x+h} f(t) \, dt \approx f(x) \cdot h
\]

This leads us to:

\[
F'(x) = \lim_{h \to 0} \frac{f(x) \cdot h}{h} = f(x)
\]

Since \( F'(x) = f(x) \), we conclude that \( F \) is indeed an antiderivative of \( f \).

Now, applying the Mean Value Theorem for integrals, we can find some \( c \in (a, b) \) such
that:

\[
\int_a^b f(x) \, dx = f(c)(b - a)
\]

Since \( F \) is continuous, we can state that:

\[
F(b) - F(a) = f(c)(b - a)
\]

This completes the proof of Part 1.



Proof of Part 2

To prove Part 2, we again consider a function \( f \) that is integrable on \([a, b]\). We define
the function \( F(x) = \int_a^x f(t) \, dt \).

Since \( f \) is integrable, \( F \) is continuous on \([a, b]\). To show that \( F \) is
differentiable, we again use the definition of the derivative:

\[
F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}
\]

Applying the definition of \( F \):

\[
F'(x) = \lim_{h \to 0} \frac{\int_a^{x+h} f(t) \, dt - \int_a^x f(t) \, dt}{h} = \lim_{h \to 0}
\frac{\int_x^{x+h} f(t) \, dt}{h}
\]

Using the properties of integrals, we find:

\[
F'(x) = \lim_{h \to 0} \frac{f(c)(h)}{h} = f(c)
\]

for some \( c \in (x, x+h) \). As \( h \) approaches \( 0 \), \( c \) approaches \( x \), and thus

\[
F'(x) = f(x)
\]

This establishes that \( F \) is differentiable and that its derivative is \( f \).

Applications of the Fundamental Theorem of
Calculus

The fundamental theorem of calculus is not just a theoretical concept; it has numerous
practical applications across different fields. Some notable applications include:

Physics: The theorem is used to calculate the work done by a variable force, where
the work is the integral of the force over the distance.

Engineering: It assists in determining the area under curves, which is essential in
various engineering calculations, including material strength and fluid dynamics.

Economics: Economists utilize it to analyze cost functions, consumer surplus, and



producer surplus through integration.

Probability: In statistics, the theorem aids in finding probabilities and expected
values by integrating probability density functions.

Computer Science: Algorithms that involve numerical integration, such as those
used in machine learning and data analysis, rely on the principles outlined in this
theorem.

In conclusion, the fundamental theorem of calculus serves as a vital link between
differentiation and integration, providing essential tools and concepts used in a multitude of
disciplines. Its implications extend far beyond theoretical mathematics, influencing practical
applications in science, engineering, and economics.

FAQ

Q: What is the significance of the fundamental theorem
of calculus?
A: The significance of the fundamental theorem of calculus lies in its ability to link the
processes of differentiation and integration, allowing for the evaluation of definite integrals
through antiderivatives. This connection is foundational in both pure and applied
mathematics.

Q: How does the fundamental theorem of calculus apply
to real-world problems?
A: The theorem applies to real-world problems by enabling calculations of areas under
curves, determining total accumulated quantities, and solving problems in physics,
economics, and engineering that involve variable rates of change.

Q: Can the fundamental theorem of calculus be applied
to functions that are not continuous?
A: While the fundamental theorem primarily applies to continuous functions, it can also be
extended to integrable functions that may have discontinuities as long as the conditions of
integrability are satisfied.

Q: What are the two parts of the fundamental theorem



of calculus?
A: The two parts of the fundamental theorem of calculus are: Part 1, which establishes the
relationship between a continuous function and its antiderivative, and Part 2, which states
that the integral of a function can be differentiated to obtain the original function.

Q: How is the fundamental theorem of calculus utilized
in physics?
A: In physics, the fundamental theorem of calculus is used to calculate work done by a
force, where the work is represented as the integral of force over distance. It also assists in
understanding motion and energy concepts through integration of velocity and
acceleration.

Q: What is an example of using the fundamental
theorem of calculus in economics?
A: In economics, the fundamental theorem can be used to compute consumer and producer
surplus by integrating demand and supply functions, respectively, over a given range, thus
determining the total benefit received by consumers and producers.

Q: Is the fundamental theorem of calculus applicable to
multivariable functions?
A: Yes, the fundamental theorem of calculus has extensions for multivariable functions,
such as the fundamental theorem for line integrals and Green's theorem, which relate
integrals over paths and regions in multivariable calculus.

Q: What prerequisites are needed to understand the
fundamental theorem of calculus?
A: To understand the fundamental theorem of calculus, one should have a solid grasp of
basic calculus concepts, including limits, derivatives, integrals, and the properties of
continuous functions.

Q: How does the Mean Value Theorem relate to the
fundamental theorem of calculus?
A: The Mean Value Theorem is related to the fundamental theorem of calculus as it
provides a justification for the existence of an average rate of change of a function over an
interval, which is integral to understanding the relationship between differentiation and
integration.
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teaches what a student needs to be thinking about when trying to construct a proof. Covering the
fundamentals of analysis sufficient for a typical beginning Real Analysis course, it never loses sight
of the fact that its primary focus is about proof writing skills. This book aims to give the student
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  proof of fundamental theorem of calculus: Building Proofs: A Practical Guide David
Stewart, Suely Oliveira, 2015-06-10 This book introduces students to the art and craft of writing
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understanding and creating proofs. It explains the standard “moves” in mathematical proofs: direct
computation, expanding definitions, proof by contradiction, proof by induction, as well as choosing
notation and strategies.
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statement through a sequence of logical steps to proofs by contradiction that reveal the absurdity of
a statement's negation, you will gain a deep understanding of the various methods of proof
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mathematical arguments with precision and rigor. As you progress through this book, you will not
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will I ever need this in life? Proofs in Competition Math aims to remedy these issues at a wide range



of levels, from the fundamentals of competition math all the way to the Olympiad level and
beyond.Don't worry if you don't know all of the math in this book; there will be prerequisites for
each skill level, giving you a better idea of your current strengths and weaknesses and allowing you
to set realistic goals as a math student. So, mathematical minds, we set you off!
  proof of fundamental theorem of calculus: No bullshit guide to math and physics Ivan Savov,
2014-08-07 Often calculus and mechanics are taught as separate subjects. It shouldn't be like that.
Learning calculus without mechanics is incredibly boring. Learning mechanics without calculus is
missing the point. This textbook integrates both subjects and highlights the profound connections
between them. This is the deal. Give me 350 pages of your attention, and I'll teach you everything
you need to know about functions, limits, derivatives, integrals, vectors, forces, and accelerations.
This book is the only math book you'll need for the first semester of undergraduate studies in
science. With concise, jargon-free lessons on topics in math and physics, each section covers one
concept at the level required for a first-year university course. Anyone can pick up this book and
become proficient in calculus and mechanics, regardless of their mathematical background.
  proof of fundamental theorem of calculus: Complex Analysis Shashank Tiwari, 2025-02-20
Complex Analysis: Advanced Concepts delves into the intricate world of complex numbers and
functions, offering a thorough exploration of their properties and applications. The book begins with
a detailed examination of basic concepts, covering arithmetic operations, geometric interpretations,
and the fundamental theorem of algebra. It then progresses to advanced topics such as complex
functions, differentiation, integration, and series. One of the book's notable strengths lies in its clear
and concise explanations, accompanied by numerous examples and exercises to reinforce
understanding. Readers are guided through theorems and proofs, gaining insight into the elegance
and power of complex analysis. The book also highlights the relevance of complex analysis in various
fields, including physics, engineering, and economics. Applications such as potential theory, fluid
dynamics, and signal processing are explored, demonstrating the subject's practical significance.
Whether used as a textbook for students or a reference for professionals, Complex Analysis:
Advanced Concepts offers a valuable resource for mastering the intricacies of this essential branch
of mathematics. Its comprehensive coverage and accessible style make it an indispensable addition
to any mathematician's library.
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language. The text is a comprehensive and largely self-contained introduction to the theory of
real-valued functions of a real variable. The chapters on Lebesgue measure and integral have been
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well as his versions of the Fundamental Theorem(s) of Calculus. With expanded chapters, additional
problems, and an expansive solutions manual, Basic Real Analysis, Second Edition is ideal for senior
undergraduates and first-year graduate students, both as a classroom text and a self-study guide.
Reviews of first edition: The book is a clear and well-structured introduction to real analysis aimed
at senior undergraduate and beginning graduate students. The prerequisites are few, but a certain
mathematical sophistication is required. ... The text contains carefully worked out examples which
contribute motivating and helping to understand the theory. There is also an excellent selection of
exercises within the text and problem sections at the end of each chapter. In fact, this textbook can
serve as a source of examples and exercises in real analysis. —Zentralblatt MATH The quality of the
exposition is good: strong and complete versions of theorems are preferred, and the material is
organised so that all the proofs are of easily manageable length; motivational comments are helpful,
and there are plenty of illustrative examples. The reader is strongly encouraged to learn by doing:
exercises are sprinkled liberally throughout the text and each chapter ends with a set of problems,
about 650 in all, some of which are of considerable intrinsic interest. —Mathematical Reviews [This
text] introduces upper-division undergraduate or first-year graduate students to real analysis....
Problems and exercises abound; an appendix constructs the reals as the Cauchy (sequential)



completion of the rationals; references are copious and judiciously chosen; and a detailed index
brings up the rear. —CHOICE Reviews
  proof of fundamental theorem of calculus: Why Prove it Again? John W. Dawson, Jr.,
2015-07-15 This monograph considers several well-known mathematical theorems and asks the
question, “Why prove it again?” while examining alternative proofs. It explores the different
rationales mathematicians may have for pursuing and presenting new proofs of previously
established results, as well as how they judge whether two proofs of a given result are different.
While a number of books have examined alternative proofs of individual theorems, this is the first
that presents comparative case studies of other methods for a variety of different theorems. The
author begins by laying out the criteria for distinguishing among proofs and enumerates reasons
why new proofs have, for so long, played a prominent role in mathematical practice. He then
outlines various purposes that alternative proofs may serve. Each chapter that follows provides a
detailed case study of alternative proofs for particular theorems, including the Pythagorean
Theorem, the Fundamental Theorem of Arithmetic, Desargues’ Theorem, the Prime Number
Theorem, and the proof of the irreducibility of cyclotomic polynomials. Why Prove It Again? will
appeal to a broad range of readers, including historians and philosophers of mathematics, students,
and practicing mathematicians. Additionally, teachers will find it to be a useful source of alternative
methods of presenting material to their students.
  proof of fundamental theorem of calculus: Mathematics for Economics and Finance
Michael Harrison, Patrick Waldron, 2011-03-31 The aim of this book is to bring students of
economics and finance who have only an introductory background in mathematics up to a quite
advanced level in the subject, thus preparing them for the core mathematical demands of
econometrics, economic theory, quantitative finance and mathematical economics, which they are
likely to encounter in their final-year courses and beyond. The level of the book will also be useful
for those embarking on the first year of their graduate studies in Business, Economics or Finance.
The book also serves as an introduction to quantitative economics and finance for mathematics
students at undergraduate level and above. In recent years, mathematics graduates have been
increasingly expected to have skills in practical subjects such as economics and finance, just as
economics graduates have been expected to have an increasingly strong grounding in mathematics.
The authors avoid the pitfalls of many texts that become too theoretical. The use of mathematical
methods in the real world is never lost sight of and quantitative analysis is brought to bear on a
variety of topics including foreign exchange rates and other macro level issues.
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