calculus root test

calculus root test is a vital concept in the field of calculus, particularly when dealing with the convergence or divergence of series. This test, often referred to as the Root Test, provides a systematic method for determining the behavior of infinite series by examining the n-th root of the absolute values of the terms. In this article, we will explore the intricacies of the calculus root test, its mathematical formulation, conditions for application, and examples to illustrate its use. We will also discuss its advantages and limitations, as well as its relationship with other convergence tests. By the end of this article, you will have a comprehensive understanding of the root test and how to apply it effectively.

- Introduction to the Root Test
- Mathematical Formulation
- Conditions for Using the Root Test
- Examples of the Root Test
- Advantages and Limitations
- Comparison with Other Convergence Tests
- Conclusion
- FAQs

Introduction to the Root Test

The Root Test is a powerful tool used in calculus to evaluate the convergence of infinite series. It is particularly useful for series whose terms involve exponential functions or factorials. The test involves taking the n-th root of the absolute value of the terms of the series and analyzing the limit as n approaches infinity. This approach helps mathematicians and students determine whether a series converges absolutely, conditionally, or diverges altogether.

Understanding the root test is crucial for students studying higher mathematics, as it lays the groundwork for more complex analysis in series and sequences. By applying this test, one can simplify the process of convergence analysis, making it easier to handle intricate series. With a clear grasp of the root test, learners can improve their problem-solving skills in calculus and related fields.

Mathematical Formulation

The mathematical formulation of the root test is straightforward yet powerful. For a series of the form $\sum a_n$, where a_n represents the n-th term of the series, the root test examines the limit:

$$L = \lim (n \rightarrow \infty) (|a_n|)^{\wedge} (1/n)$$

Based on the value of L, the series can be classified as follows:

- If L < 1, the series converges absolutely.
- If L > 1 (or $L = \infty$), the series diverges.
- If L = 1, the test is inconclusive, and further analysis is required.

This formulation highlights the importance of the absolute value of the terms, ensuring that negative values do not affect the outcome. The limit must be evaluated carefully, as it determines the behavior of the entire series. Understanding how to calculate this limit is essential for anyone applying the root test in practice.

Conditions for Using the Root Test

While the root test is a powerful method, certain conditions must be met for it to be applicable. Primarily, it is best suited for series where the terms can be expressed as $a_n = f(n)$ where f(n) involves operations that lend themselves to taking the n-th root. Common scenarios include:

- Series involving factorials, such as $\sum (n!/n^n)$.
- Exponential series, such as $\sum (r^n/n^p)$ where r and p are constants.
- Series with polynomial expressions in the form of a_n = (n^k / b^n) for constants k and b.

It is also important to note that the root test may not be effective for every series, particularly those that do not meet these criteria or where the limit evaluates to 1. In such cases, alternative convergence tests should be considered.

Examples of the Root Test

To illustrate the application of the root test, let's consider a few examples:

Example 1: Converging Series

Consider the series $\sum (1/n^2)$. Here, $a_n = 1/n^2$. We compute the limit:

$$L = \lim_{n \to \infty} (1/n^2)^n (1/n) = \lim_{n \to \infty} (1/n^n (2/n)) = 1.$$

Since L = 1, the root test is inconclusive. In this case, we would need to apply another test, such as the p-series test, to determine convergence.

Example 2: Diverging Series

Now consider the series $\sum (2^n n/n)$. Here, $a_n = 2^n n/n$. We calculate:

$$L = \lim_{n \to \infty} (|2^n/n|)^n (1/n) = \lim_{n \to \infty} (2/n^n(1/n)) = 2.$$

Since L > 1, we conclude that this series diverges.

Example 3: Absolutely Converging Series

Finally, examine the series $\sum (3^n/n^3)$. Here, a_n = $3^n/n^3$. We compute:

$$L = \lim_{n \to \infty} (|3^n/n^3|)^n (1/n) = \lim_{n \to \infty} (3/n^n(3/n)) = 3.$$

Since L > 1, this series also diverges.

Advantages and Limitations

The root test offers several advantages for analyzing series. Its primary benefits include:

- Effective for series with exponential growth or factorial terms.
- Simplicity in calculation, often requiring only the determination of a limit.
- Clear categorization of series into convergent, divergent, or inconclusive results.

However, there are limitations to the root test. For example, it is inconclusive when L=1, necessitating the use of other methods. Additionally, it may not be applicable for series whose terms do not lend themselves to taking the n-th root, such as those involving oscillating terms or complex functions.

Comparison with Other Convergence Tests

In addition to the root test, several other convergence tests exist, each with its own strengths and

weaknesses. Notable tests include:

- The Ratio Test, which analyzes the ratio of successive terms.
- The Comparison Test, which compares a series with a known convergent or divergent series.
- The Integral Test, which relates the convergence of a series to an improper integral.

Each test has specific scenarios where it is most effective. The choice of which test to use often depends on the form of the series in question. Understanding the nuances of each test helps mathematicians make informed decisions in their analysis.

Conclusion

The calculus root test is a fundamental tool in the study of infinite series, providing clear criteria for determining convergence or divergence. By understanding its formulation, conditions, and applications, students and professionals can effectively analyze a wide variety of series. While it has advantages, it is essential to recognize its limitations and the contexts in which it is most useful. As you advance in calculus, mastering the root test and other convergence tests will enhance your analytical skills and deepen your understanding of mathematical series.

FAQs

Q: What types of series are best suited for the root test?

A: The root test is particularly effective for series involving factorials, exponential functions, and polynomial expressions where the terms can be expressed in a form amenable to taking the n-th root.

Q: How do I compute the limit for the root test?

A: To compute the limit for the root test, evaluate $L = \lim (n \to \infty) (|a_n|)^n (1/n)$. Simplify the expression to find the limit, and then analyze the result to determine convergence or divergence.

Q: What should I do if the root test is inconclusive?

A: If the root test yields L = 1, indicating inconclusiveness, consider applying other convergence tests such as the Ratio Test, Comparison Test, or Integral Test to analyze the series further.

Q: Can the root test be used for alternating series?

A: Yes, the root test can be applied to alternating series, but it may not provide conclusive results. In such cases, it is often beneficial to use the Alternating Series Test or other methods.

Q: What is the importance of using absolute values in the root test?

A: The use of absolute values in the root test ensures that negative terms do not affect the limit calculation, allowing for a clear assessment of convergence based on the magnitude of the terms.

Q: Is the root test applicable to power series?

A: Yes, the root test can be effectively applied to power series. It helps determine the radius of convergence, allowing for insights into the behavior of the series within its interval of convergence.

Q: Are there any series for which the root test is not applicable?

A: The root test may not be applicable for series that do not permit taking the n-th root or for series that oscillate significantly, where the limit might not stabilize.

Q: How does the root test compare to the Ratio Test?

A: The root test examines the n-th root of terms, while the Ratio Test analyzes the ratio of successive terms. Both tests are useful, but their effectiveness depends on the specific structure of the series being analyzed.

Q: Can the root test be used in a multi-variable context?

A: While the root test is primarily designed for single-variable series, similar principles can be applied in multi-variable contexts, although specific adjustments and considerations may be necessary.

Calculus Root Test

Find other PDF articles:

http://www.speargroupllc.com/business-suggest-016/Book?ID=bYQ26-9992&title=hard-money-business-loans-bad-credit.pdf

calculus root test: EBOOK: Calculus: Early Transcendental Functions Robert T Smith, Roland Minton, 2011-02-16 Students who have used Smith/Minton's Calculus say it was easier to read than any other math book they've used. That testimony underscores the success of the authors' approach, which combines the best elements of reform with the most reliable aspects of mainstream calculus teaching, resulting in a motivating, challenging book. Smith/Minton also provide exceptional, reality-based applications that appeal to students' interests and demonstrate the elegance of math in the world around us. New features include: • A new organization placing all transcendental functions early in the book and consolidating the introduction to L'Hôpital's Rule in a single section. • More concisely written explanations in every chapter. • Many new exercises (for a total of 7,000 throughout the book) that require additional rigor not found in the 2nd Edition. • New exploratory exercises in every section that challenge students to synthesize key concepts to solve intriguing projects. • New commentaries ("Beyond Formulas") that encourage students to think mathematically beyond the procedures they learn. • New counterpoints to the historical notes, "Today in Mathematics," that stress the contemporary dynamism of mathematical research and applications, connecting past contributions to the present. • An enhanced discussion of differential equations and additional applications of vector calculus.

calculus root test: Mathematical Analysis and Its Inherent Nature Hossein Hosseini Giv, 2016-09-28 Mathematical analysis is often referred to as generalized calculus. But it is much more than that. This book has been written in the belief that emphasizing the inherent nature of a mathematical discipline helps students to understand it better. With this in mind, and focusing on the essence of analysis, the text is divided into two parts based on the way they are related to calculus: completion and abstraction. The first part describes those aspects of analysis which complete a corresponding area of calculus theoretically, while the second part concentrates on the way analysis generalizes some aspects of calculus to a more general framework. Presenting the contents in this way has an important advantage: students first learn the most important aspects of analysis on the classical space R and fill in the gaps of their calculus-based knowledge. Then they proceed to a step-by-step development of an abstract theory, namely, the theory of metric spaces which studies such crucial notions as limit, continuity, and convergence in a wider context. The readers are assumed to have passed courses in one- and several-variable calculus and an elementary course on the foundations of mathematics. A large variety of exercises and the inclusion of informal interpretations of many results and examples will greatly facilitate the reader's study of the subject.

calculus root test: Amazing and Aesthetic Aspects of Analysis Paul Loya, 2018-05-11 Lively prose and imaginative exercises draw the reader into this unique introductory real analysis textbook. Motivating the fundamental ideas and theorems that underpin real analysis with historical remarks and well-chosen quotes, the author shares his enthusiasm for the subject throughout. A student reading this book is invited not only to acquire proficiency in the fundamentals of analysis, but to develop an appreciation for abstraction and the language of its expression. In studying this book, students will encounter: the interconnections between set theory and mathematical statements and proofs; the fundamental axioms of the natural, integer, and real numbers; rigorous ϵ -N and ϵ - δ definitions; convergence and properties of an infinite series, product, or continued fraction; series, product, and continued fraction formulæ for the various elementary functions and constants. Instructors will appreciate this engaging perspective, showcasing the beauty of these fundamental results.

calculus root test: An Invitation to Real Analysis Luis F. Moreno, 2015-05-17 An Invitation to Real Analysis is written both as a stepping stone to higher calculus and analysis courses, and as foundation for deeper reasoning in applied mathematics. This book also provides a broader foundation in real analysis than is typical for future teachers of secondary mathematics. In connection with this, within the chapters, students are pointed to numerous articles from The College Mathematics Journal and The American Mathematical Monthly. These articles are inviting in their level of exposition and their wide-ranging content. Axioms are presented with an emphasis on the distinguishing characteristics that new ones bring, culminating with the axioms that define the

reals. Set theory is another theme found in this book, beginning with what students are familiar with from basic calculus. This theme runs underneath the rigorous development of functions, sequences, and series, and then ends with a chapter on transfinite cardinal numbers and with chapters on basic point-set topology. Differentiation and integration are developed with the standard level of rigor, but always with the goal of forming a firm foundation for the student who desires to pursue deeper study. A historical theme interweaves throughout the book, with many quotes and accounts of interest to all readers. Over 600 exercises and dozens of figures help the learning process. Several topics (continued fractions, for example), are included in the appendices as enrichment material. An annotated bibliography is included.

calculus root test: Fundamentals of Periodontal Instrumentation and Advanced Root Instrumentation Jill S. Gehrig, Rebecca Sroda, Darlene Saccuzzo, 2025-03-31 Step-by-step periodontal and root instruments guide for dental hygiene students covering basic skills including patient positioning, intraoral finger rests, and basic instrumentation, and advanced techniques including assessment of periodontal patients and instrumentation of the root branches of multirooted teeth, root concavities, and furcation areas--

calculus root test: Introduction to Real Analysis William C. Bauldry, 2011-09-09 An accessible introduction to real analysis and its connection to elementary calculus Bridging the gap between the development and history of realanalysis, Introduction to Real Analysis: An Educational Approach presents a comprehensive introduction to real analysis while also offering a survey of the field. With its balance of historical background, key calculus methods, and hands-onapplications, this book provides readers with a solid foundation and fundamental understanding of real analysis. The book begins with an outline of basic calculus, including aclose examination of problems illustrating links and potential difficulties. Next, a fluid introduction to real analysis is presented, guiding readers through the basic topology of realnumbers, limits, integration, and a series of functions in natural progression. The book moves on to analysis with more rigorousinvestigations, and the topology of the line is presented alongwith a discussion of limits and continuity that includes unusual examples in order to direct readers' thinking beyond intuitivereasoning and on to more complex understanding. The dichotomy of pointwise and uniform convergence is then addressed and is followed by differentiation and integration. Riemann-Stieltjes integrals and the Lebesgue measure are also introduced to broaden the presented perspective. The book concludes with a collection of advanced topics that are connected to elementary calculus, such as modelingwith logistic functions, numerical quadrature, Fourier series, and special functions. Detailed appendices outline key definitions and theorems inelementary calculus and also present additional proofs, projects, and sets in real analysis. Each chapter references historical sources on real analysis while also providing proof-oriented exercises and examples that facilitate the development of computational skills. In addition, an extensive bibliographyprovides additional resources on the topic. Introduction to Real Analysis: An Educational Approach isan ideal book for upper- undergraduate and graduate-level realanalysis courses in the areas of mathematics and education. It is also a valuable reference for educators in the field of applied mathematics.

calculus root test: Bowker's Complete Video Directory 2001, 2001

calculus root test: A Passage to Modern Analysis William J. Terrell, 2019-10-21 A Passage to Modern Analysis is an extremely well-written and reader-friendly invitation to real analysis. An introductory text for students of mathematics and its applications at the advanced undergraduate and beginning graduate level, it strikes an especially good balance between depth of coverage and accessible exposition. The examples, problems, and exposition open up a student's intuition but still provide coverage of deep areas of real analysis. A yearlong course from this text provides a solid foundation for further study or application of real analysis at the graduate level. A Passage to Modern Analysis is grounded solidly in the analysis of R and Rn, but at appropriate points it introduces and discusses the more general settings of inner product spaces, normed spaces, and metric spaces. The last five chapters offer a bridge to fundamental topics in advanced areas such as ordinary differential equations, Fourier series and partial differential equations, Lebesgue measure

and the Lebesgue integral, and Hilbert space. Thus, the book introduces interesting and useful developments beyond Euclidean space where the concepts of analysis play important roles, and it prepares readers for further study of those developments.

calculus root test: All the Mathematics You Missed Thomas A. Garrity, 2004 calculus root test: Introduction to Complex Variables and Applications Mark J. Ablowitz, Athanassios S. Fokas, 2021-03-25 An introduction to complex variables that caters for undergraduate students in applied mathematics, science, and engineering.

calculus root test: Student Solutions Manual to accompany Advanced Engineering Mathematics Warren S. Wright, 2010-06-24.

calculus root test: Advanced Engineering Mathematics Dennis G. Zill, 2016-09-01 Modern and comprehensive, the new sixth edition of Zill's Advanced Engineering Mathematics is a full compendium of topics that are most often covered in engineering mathematics courses, and is extremely flexible to meet the unique needs of courses ranging from ordinary differential equations to vector calculus. A key strength of this best-selling text is Zill's emphasis on differential equation as mathematical models, discussing the constructs and pitfalls of each.

calculus root test: Real Infinite Series Daniel D. Bonar, Michael J. Khoury Jr., 2018-12-12 This is a widely accessible introductory treatment of infinite series of real numbers, bringing the reader from basic definitions and tests to advanced results. An up-to-date presentation is given, making infinite series accessible, interesting, and useful to a wide audience, including students, teachers, and researchers. Included are elementary and advanced tests for convergence or divergence, the harmonic series, the alternating harmonic series, and closely related results. One chapter offers 107 concise, crisp, surprising results about infinite series. Another gives problems on infinite series, and solutions, which have appeared on the annual William Lowell Putnam Mathematical Competition. The lighter side of infinite series is treated in the concluding chapter where three puzzles, eighteen visuals, and several fallacious proofs are made available. Three appendices provide a listing of true or false statements, answers to why the harmonic series is so named, and an extensive list of published works on infinite series.

calculus root test: A Primer for Unit Root Testing K. Patterson, 2010-03-31 This book gives an authoritative overview of the literature on non-stationarity, integration and unit roots, providing direction and guidance. It also provides detailed examples to show how the techniques can be applied in practical situations and the pitfalls to avoid.

calculus root test: The Best Writing on Mathematics 2019 Mircea Pitici, 2019-11-05 The year's finest mathematical writing from around the world This annual anthology brings together the year's finest mathematics writing from around the world. Featuring promising new voices alongside some of the foremost names in the field, The Best Writing on Mathematics 2019 makes available to a wide audience many articles not easily found anywhere else—and you don't need to be a mathematician to enjoy them. These essays delve into the history, philosophy, teaching, and everyday aspects of math, offering surprising insights into its nature, meaning, and practice—and taking readers behind the scenes of today's hottest mathematical debates. In this volume, Moon Duchin explains how geometric-statistical methods can be used to combat gerrymandering, Jeremy Avigad illustrates the growing use of computation in making and verifying mathematical hypotheses, and Kokichi Sugihara describes how to construct geometrical objects with unusual visual properties. In other essays, Neil Sloane presents some recent additions to the vast database of integer sequences he has catalogued, and Alessandro Di Bucchianico and his colleagues highlight how mathematical methods have been successfully applied to big-data problems. And there's much, much more. In addition to presenting the year's most memorable math writing, this must-have anthology includes an introduction by the editor and a bibliography of other notable writings on mathematics. This is a must-read for anyone interested in where math has taken us—and where it is headed.

calculus root test: Fundamentals of Periodontal Instrumentation and Advanced Root Instrumentation Jill Gehrig, Rebecca Sroda, Darlene Saccuzzo, 2018-07-16 Publisher's Note: Products purchased from 3rd Party sellers are not guaranteed by the Publisher for quality,

authenticity, or access to any online entitlements included with the product. Walking dental hygiene students step-by-step through the "how to"—not just the "what" and "why"—of using periodontal and root instruments, this 8th Edition of Jill Gehrig's definitive resource features new chapters, new online technique videos, updated coverage of the latest evidence-based techniques and equipment, and an expanded array of online teaching and learning resources. Designed to make it easy for students to learn instrumentation, this practical book first takes students through basic skills—patient positioning, intraoral finger rests, and basic instrumentation—then covers advanced techniques, including assessment of periodontal patients and instrumentation of the root branches of multirooted teeth, root concavities, and furcation areas. • Stand-alone modules provide step-by-step instructions for each major instrument classification (sickle scalars, universal curets, area-specific curets, etc.), providing instructors with maximum teaching flexibility. • Module outlines make it easy for students to locate specific information. • Chapter-opening learning objectives help students recognize and study important concepts. • A step-by-step format allows students to work independently and at their own pace—fostering autonomy and decision-making skills. • Key terms help students learn a whole new dental vocabulary as they move through the text. • Study aids, including boxes, tables, and flow charts, visually reinforce important content and permit quick reference during technique practice and at-home review. • Case-based patient experiences and critical thinking activities encourage students to apply concepts to clinical situations and help develop problem-solving skills. • Skill evaluation checklists guide student practice, promote self-assessment skills, and provide benchmarks for faculty evaluation of skill attainment. • Thirty-two FREE online videos (12 new to this edition) demonstrate instrumentation techniques.

calculus root test: Complex Variables Mark J. Ablowitz, A. S. Fokas, 2003 Complex variables provide powerful methods for attacking many difficult problems, and it is the aim of this book to provide a thorough grounding in these methods and their application. This new edition has been improved throughout and is ideal for use in undergraduate and introductory graduate courses in complex variables.

calculus root test: Combinatorics Nicholas Loehr, 2017-08-10 Combinatorics, Second Edition is a well-rounded, general introduction to the subjects of enumerative, bijective, and algebraic combinatorics. The textbook emphasizes bijective proofs, which provide elegant solutions to counting problems by setting up one-to-one correspondences between two sets of combinatorial objects. The author has written the textbook to be accessible to readers without any prior background in abstract algebra or combinatorics. Part I of the second edition develops an array of mathematical tools to solve counting problems: basic counting rules, recursions, inclusion-exclusion techniques, generating functions, bijective proofs, and linear algebraic methods. These tools are used to analyze combinatorial structures such as words, permutations, subsets, functions, graphs, trees, lattice paths, and much more. Part II cover topics in algebraic combinatorics including group actions, permutation statistics, symmetric functions, and tableau combinatorics. This edition provides greater coverage of the use of ordinary and exponential generating functions as a problem-solving tool. Along with two new chapters, several new sections, and improved exposition throughout, the textbook is brimming with many examples and exercises of various levels of difficulty.

calculus root test: Unit Root Tests in Time Series Volume 2 K. Patterson, 2012-07-05 Testing for a Unit Root is now an essential part of time series analysis but the literature on the topic is so large that knowing where to start is difficult even for the specialist. This book provides a way into the techniques of unit root testing, explaining the pitfalls and nonstandard cases, using practical examples and simulation analysis.

calculus root test: *Basic Complex Analysis* Jerrold E. Marsden, Michael J. Hoffman, 1999 Basic Complex Analysis skillfully combines a clear exposition of core theory with a rich variety of applications. Designed for undergraduates in mathematics, the physical sciences, and engineering who have completed two years of calculus and are taking complex analysis for the first time.

Related to calculus root test

- **Ch. 1 Introduction Calculus Volume 1 | OpenStax** In this chapter, we review all the functions necessary to study calculus. We define polynomial, rational, trigonometric, exponential, and logarithmic functions
- **Calculus Volume 1 OpenStax** Study calculus online free by downloading volume 1 of OpenStax's college Calculus textbook and using our accompanying online resources
- **Calculus OpenStax** Explore free calculus resources and textbooks from OpenStax to enhance your understanding and excel in mathematics
- **1.1 Review of Functions Calculus Volume 1 | OpenStax** Learning Objectives 1.1.1 Use functional notation to evaluate a function. 1.1.2 Determine the domain and range of a function. 1.1.3 Draw the graph of a function. 1.1.4 Find the zeros of a
- **Preface Calculus Volume 1 | OpenStax** Our Calculus Volume 1 textbook adheres to the scope and sequence of most general calculus courses nationwide. We have worked to make calculus interesting and accessible to students
- **Preface Calculus Volume 3 | OpenStax** OpenStax is a nonprofit based at Rice University, and it's our mission to improve student access to education. Our first openly licensed college textboo **Index Calculus Volume 3 | OpenStax** This free textbook is an OpenStax resource written to increase student access to high-quality, peer-reviewed learning materials
- A Table of Integrals Calculus Volume 1 | OpenStax This free textbook is an OpenStax resource written to increase student access to high-quality, peer-reviewed learning materials
- **2.4 Continuity Calculus Volume 1 | OpenStax** Throughout our study of calculus, we will encounter many powerful theorems concerning such functions. The first of these theorems is the Intermediate Value Theorem
- **2.1 A Preview of Calculus Calculus Volume 1 | OpenStax** As we embark on our study of calculus, we shall see how its development arose from common solutions to practical problems in areas such as engineering physics—like the space travel
- **Ch. 1 Introduction Calculus Volume 1 | OpenStax** In this chapter, we review all the functions necessary to study calculus. We define polynomial, rational, trigonometric, exponential, and logarithmic functions
- **Calculus Volume 1 OpenStax** Study calculus online free by downloading volume 1 of OpenStax's college Calculus textbook and using our accompanying online resources
- **Calculus OpenStax** Explore free calculus resources and textbooks from OpenStax to enhance your understanding and excel in mathematics
- **1.1 Review of Functions Calculus Volume 1 | OpenStax** Learning Objectives 1.1.1 Use functional notation to evaluate a function. 1.1.2 Determine the domain and range of a function. 1.1.3 Draw the graph of a function. 1.1.4 Find the zeros of a
- **Preface Calculus Volume 1 | OpenStax** Our Calculus Volume 1 textbook adheres to the scope and sequence of most general calculus courses nationwide. We have worked to make calculus interesting and accessible to students
- **Preface Calculus Volume 3 | OpenStax** OpenStax is a nonprofit based at Rice University, and it's our mission to improve student access to education. Our first openly licensed college textboo **Index Calculus Volume 3 | OpenStax** This free textbook is an OpenStax resource written to increase student access to high-quality, peer-reviewed learning materials
- A Table of Integrals Calculus Volume 1 | OpenStax This free textbook is an OpenStax resource written to increase student access to high-quality, peer-reviewed learning materials
- $\textbf{2.4 Continuity Calculus Volume 1 | OpenStax} \ \text{Throughout our study of calculus, we will} \\ encounter many powerful theorems concerning such functions. The first of these theorems is the Intermediate Value Theorem}$
- **2.1 A Preview of Calculus Calculus Volume 1 | OpenStax** As we embark on our study of calculus, we shall see how its development arose from common solutions to practical problems in

areas such as engineering physics—like the space travel

Back to Home: http://www.speargroupllc.com