heart anatomy black and white

heart anatomy black and white is a fascinating subject that encompasses the intricate details of the heart's structure, function, and physiological significance. Understanding heart anatomy is crucial for both medical professionals and enthusiasts alike, as it lays the foundation for comprehending cardiovascular health and diseases. This article will delve into the various components of the heart, their functions, and the importance of studying heart anatomy in black and white illustrations, which can enhance clarity and understanding. Readers will gain insights into the heart's chambers, valves, blood flow, and common anatomical variations, as well as the significance of visual representations in medical education.

- Introduction to Heart Anatomy
- The Structure of the Heart
- Heart Chambers and Valves
- Blood Flow Through the Heart
- Black and White Illustrations in Medical Education
- Common Anatomical Variations
- Conclusion and Significance of Heart Anatomy

Introduction to Heart Anatomy

Heart anatomy is a crucial aspect of human biology that governs the body's circulatory system. The heart is a muscular organ located in the thoracic cavity, functioning as a pump to circulate blood throughout the body. Understanding this organ's anatomy helps in diagnosing and treating various heart-related conditions. Medical professionals often use diagrams and illustrations to teach heart anatomy due to their effectiveness in conveying complex information. Black and white illustrations, in particular, provide clear visual representations that highlight the essential structures without the distraction of color. This article will explore the heart's anatomy in detail, emphasizing its components and the benefits of black and white visuals.

The Structure of the Heart

The heart's structure is composed of various layers and components, each playing a significant role in its overall function. The heart is encased in a protective membrane called the pericardium, which also contains a small amount of fluid to reduce friction during the heart's movements. The heart itself consists of three main layers: the epicardium, myocardium, and endocardium.

Epicardium

The epicardium is the outermost layer of the heart and is also known as the visceral layer of the serous pericardium. This layer consists of connective tissue and provides a protective barrier for the heart. It also contains blood vessels that supply the heart muscle with nutrients and oxygen.

Myocardium

The myocardium is the thick, muscular middle layer of the heart, composed of cardiac muscle. This layer is responsible for the heart's contraction and pumping action. The myocardium's strength and thickness vary between the different chambers of the heart, being most developed in the left ventricle, which pumps blood to the entire body.

Endocardium

The innermost layer, the endocardium, lines the heart chambers and covers the heart valves. This smooth layer is crucial for preventing blood clots and ensuring efficient blood flow through the heart. It also plays a role in the heart's electrical conduction system.

Heart Chambers and Valves

The heart consists of four chambers: two atria and two ventricles. The atria are the upper chambers that receive blood, while the ventricles are the lower chambers that pump blood out of the heart.

Left and Right Atria

The right atrium receives deoxygenated blood from the body through the superior and inferior vena cavae. The left atrium, on the other hand, receives oxygenated blood from the lungs via the pulmonary veins. The atria contract to push blood into the ventricles, playing a crucial role in the heart's filling process.

Left and Right Ventricles

The right ventricle pumps deoxygenated blood to the lungs through the pulmonary artery for oxygenation. Conversely, the left ventricle pumps oxygenated blood to the rest of the body through the aorta. The left ventricle's muscular walls are thicker than those of the right ventricle due to the greater force required to pump blood throughout the body.

Heart Valves

The heart contains four main valves that ensure unidirectional blood flow: the tricuspid valve, pulmonary valve, mitral valve, and aortic valve. These valves open and close in response to pressure changes within the heart chambers.

- Tricuspid Valve: Located between the right atrium and right ventricle, it prevents backflow of blood into the atrium.
- **Pulmonary Valve:** Controls blood flow from the right ventricle into the pulmonary artery.
- Mitral Valve: Situated between the left atrium and left ventricle, it prevents backflow into the atrium.
- Aortic Valve: Regulates blood flow from the left ventricle into the aorta.

Blood Flow Through the Heart

The heart operates as a dual pump, facilitating the continuous circulation of blood. Understanding the pathway of blood flow is essential for grasping heart anatomy and function.

Systemic and Pulmonary Circulation

The heart is involved in two main circulatory pathways: systemic and pulmonary circulation. Systemic circulation refers to the flow of oxygenated blood from the heart to the body, while pulmonary circulation involves the movement of deoxygenated blood from the heart to the lungs.

Pathway of Blood Flow

The sequence of blood flow through the heart can be summarized as follows:

- 1. Deoxygenated blood enters the right atrium via the superior and inferior vena cavae.
- 2. Blood flows from the right atrium through the tricuspid valve into the right ventricle.
- 3. The right ventricle pumps blood through the pulmonary valve into the pulmonary artery, leading to the lungs.
- 4. In the lungs, blood releases carbon dioxide and absorbs oxygen.
- 5. Oxygenated blood returns to the left atrium via the pulmonary veins.
- 6. Blood flows from the left atrium through the mitral valve into the left ventricle.
- 7. The left ventricle pumps blood through the aortic valve into the aorta, supplying the body with oxygen-rich blood.

Black and White Illustrations in Medical Education

Black and white illustrations have long been a staple in medical education, particularly in the study of heart anatomy. These illustrations provide clear and detailed depictions of the heart's structure, allowing for focused study without the distraction of color.

Benefits of Black and White Illustrations

Utilizing black and white drawings in heart anatomy studies has several advantages:

- **Clarity:** The absence of color helps highlight the intricate details of the heart's structure.
- **Focus:** Students can concentrate on the anatomical features without the influence of color variations.
- **Reproducibility:** Black and white images can be easily reproduced and distributed for educational purposes.
- Cost-Effective: Printing in black and white is generally less expensive than color printing.

Common Anatomical Variations

While the basic structure of the heart is consistent, there are several common variations that can occur in individuals. Understanding these variations is important in the context of both anatomy and clinical practice.

Anatomical Variations

Some common anatomical variations include:

- **Septal Defects:** Abnormal openings between the heart chambers can lead to mixed blood flow.
- Valvular Anomalies: Variations in valve structure may impact blood flow and heart efficiency.
- Coronary Artery Variations: Differences in the origin and course of coronary arteries can affect blood supply to the heart muscle.

Conclusion and Significance of Heart Anatomy

Understanding heart anatomy is essential for anyone interested in the workings of the human body. The heart's structure, including its chambers, valves, and the flow of blood, is foundational knowledge for medical professionals and students. Black and white illustrations serve as invaluable tools in learning and teaching heart anatomy, providing clarity and focus. As we continue to explore the complexities of cardiovascular health, a thorough understanding of heart anatomy will be pivotal in advancing medical knowledge and improving patient care.

Q: What is the primary function of the heart?

A: The primary function of the heart is to pump blood throughout the body, supplying oxygen and nutrients to tissues and organs while removing carbon dioxide and waste products.

Q: Why are black and white illustrations effective in medical education?

A: Black and white illustrations are effective because they provide clarity, focus on anatomical details, and are cost-effective for reproduction and distribution.

Q: How many chambers does the heart have?

A: The heart has four chambers: two atria and two ventricles.

Q: What are septal defects?

A: Septal defects are abnormal openings in the septum, the wall separating the heart chambers, which can lead to improper blood flow between the left and right sides of the heart.

Q: What is the role of heart valves?

A: Heart valves ensure unidirectional blood flow through the heart by opening and closing in response to pressure changes within the heart chambers.

Q: How does blood flow through the heart?

A: Blood flow through the heart follows a specific pathway: deoxygenated blood enters the right atrium, moves to the right ventricle, is pumped to the lungs, returns to the left atrium, and finally flows into the left ventricle before being pumped into the body.

Q: What is the myocardium?

A: The myocardium is the thick, muscular middle layer of the heart, responsible for the contraction and pumping action of the heart.

Q: What variations can occur in heart anatomy?

A: Common variations in heart anatomy include septal defects, valvular anomalies, and variations in the origin and course of coronary arteries.

Q: What is the significance of studying heart anatomy?

A: Studying heart anatomy is crucial for understanding cardiovascular health, diagnosing heart diseases, and developing effective treatments for heart-related conditions.

Heart Anatomy Black And White

Find other PDF articles:

heart anatomy black and white: Handbook of Cardiac Anatomy, Physiology, and Devices Paul A. Iaizzo, 2010-03-11 A revolution began in my professional career and education in 1997. In that year, I visited the University of Minnesota to discuss collaborative opportunities in cardiac anatomy, physiology, and medical device testing. The meeting was with a faculty member of the Department of Anesthesiology, Professor Paul Iaizzo. I didn't know what to expect but, as always, I remained open minded and optimistic. Little did I know that my life would never be the same. . . . During the mid to late 1990s, Paul Iaizzo and his team were performing anesthesia research on isolated guinea pig hearts. We found the work appealing, but it was unclear how this research might apply to our interest in tools to aid in the design of implantable devices for the cardiovascular system. As discussions progressed, we noted that we would be far more interested in reanimation of large mammalian hearts, in particular, human hearts. Paul was confident this could be accomplished on large hearts, but thought that it would be unlikely that we would ever have access to human hearts for this application. We shook hands and the collaboration was born in 1997. In the same year, Paul and the research team at the University of Minnesota (including Bill Gallagher and Charles Soule) reanimated several swine hearts. Unlike the previous work on guinea pig hearts which were reanimated in Langendorff mode, the intention of this research was to produce a fully functional working heart model for device testing and cardiac research.

heart anatomy black and white: Molecular Mechanisms of Cardiac Hypertrophy and Failure Richard A. Walsh, 2005-11-29 This title reviews current knowledge of the mechanisms contributing to heart failure. Editor Richard Walsh and an internationally renowned team of contributors discuss key advances in molecular and cell biology, biochemistry, and pharmacology, focusing on advances that have a direct bearing on current clinical studies. It highlights developments across a broad range of disciplines, with in-depth coverage of each topic providing background and perspective on current literature. By setting new advances in a broader context, this text allows readers to compare different ideas and evaluate their importance in their own areas of research or clinical practice.

heart anatomy black and white: The Negro is a Man W. S. Armistead, 1903 heart anatomy black and white: Handbook of Research Methods in Cardiovascular Behavioral Medicine Neil Schneiderman, Stephen M. Weiss, Peter G. Kaufmann, 2013-11-21 Cardiovascular disease continues to be the number ioral medicine was developed and shaped into the one source of morbidity and mortality in our coun following definition: try. Despite a 35% reduction since 1964, these Behavioral medicine is the interdisciplinary field con diseases, particularly coronary heart disease cerned with the development and integration of behav (CHD), claim nearly 1,000,000 lives each year in ioral and biomedical science knowledge and techniques the United States (Havlik & Feinleib, 1979). relevant to the understanding of health and illness and The Framingham study, among others, has iden the application of this knowledge and these techniques to prevention, diagnosis, treatment and rehabilitation. tified three major risk factors implicated in the de (Schwartz & Weiss, 1978) velopment of CHD: smoking, elevated serum cho lesterol, and high blood pressure (Castelli et at., This concept of biobehavioral collaboration 1986). Given that these factors account for less challenged scientists and clinicians of many disci than 50% of the variance associated with CHD plines to consider how they might more effectively (Jenkins, 1976), it has become obvious that addi develop diagnostic, treatment, and prevention tional risk factors must be identified if further pro strategies by merging their perspectives to address gress is to be made in disease prevention and simultaneously, among others, behavioral, psy control.

heart anatomy black and white: <u>Early Clinical Exposure in Anatomy - E-Book</u> Anand Reddy, 2024-05-10 In 2019, the National Medical Council (NMC) made many changes to the medical

curriculum; the inclusion of Early Clinical Exposure (ECE) was one of the important changes. By including ECE, NMC aims solely at achieving both horizontal and verticalintegration in different phases of a medical curriculum. It also targets at developing the students' interest in preclinical subjects at the beginning of the curriculum, which will help strengthen the foundation of their career and produce knowledgeable Indianmedical graduates. The book has been written according to the new changes made to the curriculum by the NMC. It will help fulfil the need of thestudents and adapt themselves to the changes easily, as facing new changes is always a challenge for both students as well asteachers. Keeping the NMC's objective in mind, the author has made an effort to impart knowledge in a competency-based and ECE format. This book focuses on explaining the anatomical basis of various disorders in a question-answer format. When the 'why' is clear, the 'how' becomes easy to understand. And, when the 'how' becomes easy, the management of a disease also becomes easy. This book will provide 'guidelines' to preclinical students to prepare for clinical-based questions, and considering the vastness of the subject, it can be one of the best tools to revise clinical aspects of various systems of the human anatomy. SALIENT FEATURES • A unique and exclusive ECE-oriented book, as it covers not only clinical but also the collateral aspects of all topics in detail. Designed as per the latest Competency-Based Medical Education (CBME) curriculum covers maximum competencies of the subject. Includes more than 225 clinical cases of gross anatomy (upper limb, thorax, head neck face, central nervous system, abdomen, lower limb), general anatomy, embryology and genetics. Covers anatomy-related AETCOM modules. Presents topics in a question-answer format - more than 1700 questions (including the ones on MedEnact) into must-know, should-know and desirable-to-know categories - a pattern useful for fast as well as slow learners. Knowledge-oriented - best for understanding the basic concepts of the subject and anatomical basis of various clinical conditions • Exam-oriented - helps in revision and self-assessment before examinations. Line diagrams, clinical images, tables and flowcharts - facilitates quick learning and knowledge retention. Student-friendly approach - useful for beginners as each case gives an overall idea of the topic. Concise arrangement of the subject - useful for revision and preparation for the EXIT (NExT) and other similar examinations • Helpful for postgraduate students (e.g., MD anatomy, MSc anatomy) and anatomists; undergraduate students of alliedmedical sciences such as BDS, BPTh and Nursing. Includes topic-related quotes and images - an extracurricular feast

heart anatomy black and white: Ethnic Factors in Health and Disease J. K. Cruickshank, D. G. Beevers, 2013-10-22 Ethnic Factors in Health and Disease discusses ethnicity from a medical perspective. The book is comprised of 35 chapters that are grouped into four sections. The text first covers the background issues concerning the relationship between ethnicity and health. The next part deals with topics related to epidemiology, such as the health of migrants and interethnic comparison of cardiovascular disease. Next, the book tackles the sociology of health; this part covers occupational status, housing, and racism. The last part discusses the specific medical aspects, including pregnancy, viral infections, and cardiovascular disease. The book will be of great use to medical researchers and practitioners. Professionals dealing with ethnicity, such as sociologists, anthropologists, and psychologists will also benefit from this book.

heart anatomy black and white: Descriptive and Illustrated Catalogue of the Physiological Series of Comparative Anatomy Contained in the Museum of the Royal College of Surgeons in London ... Royal College of Surgeons of England. Museum, 1834

heart anatomy black and white: Cross-sectional Human Anatomy David Dean, Thomas E. Herbener, 2000 Featuring full color cross-sectional images from The Visible Human Project, this new atlas is co-authored by a radiologist and includes orie ntation drawings with corresponding MRIs and CTs. Thus students can un derstand the relationship between anatomy and how it is represented in these imaging modalities. The text includes 100 full color tissue images, 200 line drawings, and 200 magnetic resonance and computed tomography images. Images are labeled with numbers; the key is on a separate two-page spread to facilitate self-testing.

heart anatomy black and white: The Failing Right Heart Kyriakos Anastasiadis, Stephen Westaby, Polychronis Antonitsis, 2015-06-29 This book provides an up-to-date and comprehensive

overview of the etiology, diagnosis and treatment of conditions affecting the structure and function of the right heart, comprising the right atrium, right ventricle, tricuspid valve and pulmonary circulation. Anatomy and physiology of the right heart, etiology and role of imaging of right heart failure, as well as treatment options, from pharmacological regimes to surgery are included in the text. Algorithms and flow diagrams are provided with illustrated snapshots of the decisions involved in the management of these patients. The Failing Right Heart is aimed to serve as an essential reference for cardiac surgeons, cardiologists, cardiac anesthesiologists and cardiac intensivists on the diagnosis and treatment of patients with congenital or acquired right heart disease.

heart anatomy black and white: Medical Imaging for Health Professionals Raymond M. Reilly, 2019-02-06 Describes the most common imaging technologies and their diagnostic applications so that pharmacists and other health professionals, as well as imaging researchers, can understand and interpret medical imaging science This book guides pharmacists and other health professionals and researchers to understand and interpret medical imaging. Divided into two sections, it covers both fundamental principles and clinical applications. It describes the most common imaging technologies and their use to diagnose diseases. In addition, the authors introduce the emerging role of molecular imaging including PET in the diagnosis of cancer and to assess the effectiveness of cancer treatments. The book features many illustrations and discusses many patient case examples. Medical Imaging for Health Professionals: Technologies and Clinical Applications offers in-depth chapters explaining the basic principles of: X-Ray, CT, and Mammography Technology; Nuclear Medicine Imaging Technology; Radionuclide Production and Radiopharmaceuticals; Magnetic Resonance Imaging (MRI) Technology; and Ultrasound Imaging Technology. It also provides chapters written by expert radiologists in well-explained terminology discussing clinical applications including: Cardiac Imaging; Lung Imaging; Breast Imaging; Endocrine Gland Imaging; Abdominal Imaging; Genitourinary Tract Imaging; Imaging of the Head, Neck, Spine and Brain; Musculoskeletal Imaging; and Molecular Imaging with Positron Emission Tomography (PET). Teaches pharmacists, health professionals, and researchers the basics of medical imaging technology Introduces all of the customary imaging tools—X-ray, CT, ultrasound, MRI, SPECT, and PET—and describes their diagnostic applications Explains how molecular imaging aids in cancer diagnosis and in assessing the effectiveness of cancer treatments Includes many case examples of imaging applications for diagnosing common diseases Medical Imaging for Health Professionals: Technologies and Clinical Applications is an important resource for pharmacists, nurses, physiotherapists, respiratory therapists, occupational therapists, radiological or nuclear medicine technologists, health physicists, radiotherapists, as well as researchers in the imaging field.

heart anatomy black and white: Cumulated Index Medicus, 1994

heart anatomy black and white: Heart's Vortex Ares Pasipoularides, 2009-11 This outstanding resource provides a comprehensive guide to intracardiac blood flow phenomena and cardiac hemodynamics, including the developmental history, theoretical frameworks, computational fluid dynamics, and practical applications for clinical cardiology, cardiac imaging and embryology. It is not a mere compilation of the most up-to-date scientific data and relevant concepts. Rather, it is an integrated educational means to developing pluridisciplinary background, knowledge, and understanding. Such understanding allows an appreciation of the crucial, albeit heretofore generally unappreciated, importance of intracardiac blood flow phenomena in a host of multifaceted functional and morphogenetic cardiac adaptations. The book includes over 400 figures, which were prepared by the author and form a vital part of the pedagogy. It is organized in three parts. Part I, Fundamentals of Intracardiac Flows and Their Measurement, provides comprehensive background from many disciplines that are necessary for a deep and broad understanding and appreciation of intracardiac blood flow phenomena. Such indispensable background spans several chapters and covers necessary mathematics, a brief history of the evolution of ideas and methodological approaches that are relevant to cardiac fluid dynamics and imaging, a qualitative introduction to fluid dynamic stability theory, chapters on physics and fluid dynamics of unsteady blood flows and an intuitive introduction to various kinds of relevant vortical fluid motions. Part II, Visualization of Intracardiac Blood Flows: Methodologies, Frameworks and Insights, is devoted to pluridisciplinary approaches to the visualization of intracardiac blood flows. It encompasses chapters on 3-D real-time and live 3-D echocardiography and Doppler echocardiography, CT tomographic scanning modalities, including multidetector spiral/helical dataset acquisitions, MRI and cardiac MRA, including phase contrast velocity mapping (PCVM), etc. An entire chapter is devoted to the understanding of post processing exploration techniques and the display of tomographic data, including slice-and-dice 3-D techniques and cine-MRI. Part II also encompasses an intuitive introduction to CFD as it pertains to intracardiac blood flow simulations, followed—in separate chapters—by conceptually rich treatments of the computational fluid dynamics of ejection and of diastolic filling. An entire chapter is devoted to fluid dynamic epigenetic factors in cardiogenesis and pre- and postnatal cardiac remodeling, and another to clinical and basic science perspectives, and their implications for emerging research frontiers. Part III contains an Appendix presenting technical aspects of the method of predetermined boundary motion, PBM, developed at Duke University by the author and his collaborators.

heart anatomy black and white: *Mammal Anatomy* Marshall Cavendish Corporation, 2010 Provides details on the anatomy of fourteen mammals, including dolphins, chimpanzees, squirrels, and humans, and describes the musculoskeletal, circulatory, nervous, digestive, and reproductive systems of each animal.

heart anatomy black and white: Evidence-based Management of Hypertension Matthew R Weir, 2010-09-01 The treatment of hypertension is now evolving into a decision-making process of ever greater complexity. Not only has the range of drugs available increased but so too has our knowledge of the diversity of individual patients' responsiveness to therapy, and the need to tailor their treatment with reference to a wide variety of additional factors. In order to provide effective patient care, the clinician needs to be aware of all the options available, but also of the evidence supporting their use and the extent to which that evidence justifies the choices made. In this new volume, leading authorities in their fields draw on the available evidence to provide answers to a series of key clinical questions facing the clinician treating hypertension: Should we treat prehypertension? How does the choice of therapy change in the presence of comorbidities such as obesity, ischemic heart disease, left ventricular hypertrophy, diabetes or cerebrovascular disease? Evidence-based Management of Hypertension provides answers to these and many other questions, as the authors present an expert analysis of the available evidence and offer authoritative recommendations for treatment planning. In each chapter, tables highlight evidence from a variety of sources, and every chapter concludes with a series of key practice points that present a summary of evidence-based recommendations for best practice, graded according to the quality of that evidence. For any clinician concerned with the care of the hypertensive patient, this volume will be a valuable aid to treatment planning and long-term management.

heart anatomy black and white: Public Health Service Publication, 1956

heart anatomy black and white: Cardiac Imaging Cases Charles White, Joseph Chen, Joseph Jen-Sho Chen, 2010-11-29 This easy-to-use, clinically oriented learning guide presents 115 unique cases that cover the scope of cardiac imaging. Given the standard format of problem and solution, each case is structured for effective review and learning for both the resident-in-training and the experienced clinician. Featuring over 440 images and accompanied by brief yet informative discussions, Cardiac Imaging Cases is the ideal resource and reference guide for anyone in the field of cardiovascular radiology.

heart anatomy black and white: *Graphic Medicine, Humanizing Healthcare and Novel Approaches in Anatomical Education* Leonard Shapiro, 2023-09-23 This book contains subjects by authors with a fresh, exciting and extensive focus within the medical humanities, offering the reader chapters which include the history of medical illustration, Graphic Medicine as a vehicle for the expression of humanistic dimensions of healthcare, equitable and ethical medical illustrations, as well as novel, art-based approaches in anatomical education. Authors consider the role of visual narratives in medical and scientific illustration, the unique affordances of the comics medium, the

history of comics as a form of medical and scientific visualization, and the role of comics as didactic tools and as vehicles for the expression of the humanistic dimensions of healthcare. A chapter considers ethical and equitable implications in global healthcare practice, and highlights the work currently being undertaken to address inappropriate and problematic depictions of people in global health visualizations. This will inform the reader of emerging and current thinking about visual communication and the use of images in the public domain, as well as in the healthcare and education sectors. Novel approaches in anatomical education include the benefits of three-dimensional anatomy models made of felt, visual analogies as a method to enhance students' learning of histology, the use of the hands for learning anatomy, and visualizing anatomy through art, archaeology and medicine. This book will appeal to readers who have an interest in the medical humanities, Graphic Medicine, and ethical medical and anatomical illustrations. These include academic and non-academic readers, medical students, medical educators, clinicians, health-care workers, as well as policy makers.

heart anatomy black and white: Cardiac Imaging Charles S. White, Linda B. Haramati, Joseph Jen-Sho Chen, Jeffrey M. Levsky, 2014-03 Cardiac Imaging provides a guided approach to effectively diagnosing over 100 pathologies commonly encountered by cardiac radiologists and residents.

heart anatomy black and white: Emergency Point-of-Care Ultrasound James A. Connolly, Anthony J. Dean, Beatrice Hoffmann, Robert D. Jarman, 2017-10-23 Featuring contributions from internationally recognized experts in point-of-care sonography, Emergency Point-of-Care Ultrasound, Second Edition combines a wealth of images with clear, succinct text to help beginners, as well as experienced sonographers, develop and refine their sonography skills. The book contains chapters devoted to scanning the chest, abdomen, head and neck, and extremities, as well as paediatric evaluations, ultrasound-guided vascular access, and more. An entire section is devoted to the syndromic approach for an array of symptoms and patient populations, including chest and abdominal pain, respiratory distress, HIV and TB coinfected patients, and pregnant patients. Also included is expert guidance on administering ultrasound in a variety of challenging environments, such as communities and regions with underdeveloped healthcare systems, hostile environments, and cyberspace. Each chapter begins with an introduction to the focused scan under discussion and a detailed description of methods for obtaining useful images. This is followed by examples of normal and abnormal scans, along with discussions of potential pitfalls of the technique, valuable insights from experienced users, and summaries of the most up-to-date evidence. Emergency Point-of-Care Ultrasound, Second Edition is a valuable working resource for emergency medicine residents and trainees, practitioners who are just bringing ultrasound scanning into their practices, and clinicians with many years of sonographic experience.

heart anatomy black and white: <u>Text-book of Anatomy, Physiology and Hygiene</u> Edward Franklin Smith, 1898

Related to heart anatomy black and white

Heart disease - Symptoms and causes - Mayo Clinic Symptoms of heart disease in the blood vessels Coronary artery disease is a common heart condition that affects the major blood vessels that supply the heart muscle. A

How the Heart Works - How the Heart Beats | NHLBI, NIH Your heartbeat is the contraction of your heart to pump blood to your lungs and the rest of your body. Your heart's electrical system determines how fast your heart beats

Heart disease - Diagnosis and treatment - Mayo Clinic Learn about symptoms, causes and treatment of cardiovascular disease, a term describing a wide range of conditions that can affect the heart

How Blood Flows through the Heart - NHLBI, NIH Oxygen-poor blood from the body enters your heart through two large veins called the superior and inferior vena cava. The blood enters the heart's right atrium and is pumped to

Cardiomyopathy - Symptoms and causes - Mayo Clinic Overview Cardiomyopathy (kahr-dee-o-my-OP-uh-thee) is a disease of the heart muscle. It causes the heart to have a harder time pumping blood to the rest of the body, which

What Is Coronary Heart Disease? - NHLBI, NIH Coronary heart disease is a type of heart disease that occurs when the arteries of the heart cannot deliver enough oxygen -rich blood to the heart muscle due to narrowing from

What Is Heart Failure? - NHLBI, NIH Heart failure is a condition that occurs when your heart can't pump enough blood for your body's needs. Learn about the symptoms, causes, risk factors, and treatments for

Coronary Heart Disease Risk Factors - NHLBI, NIH Your risk of coronary heart disease increases based on the number of risk factors you have and how serious they are. Some risk factors — such as high blood pressure and

Spotlight on UPFs: NIH explores link between ultra - NHLBI, NIH In addition to heart disease, studies have linked UPFs to weight gain, hypertension, type 2 diabetes, chronic obstructive pulmonary disease, cancer, and other problems. Studies

Cardiovascular Medicine in Phoenix - Mayo Clinic The cardiology and cardiovascular medicine team at Mayo Clinic in Phoenix, Arizona, specializes in treatment of complex heart and vascular conditions

Heart disease - Symptoms and causes - Mayo Clinic Symptoms of heart disease in the blood vessels Coronary artery disease is a common heart condition that affects the major blood vessels that supply the heart muscle. A

How the Heart Works - How the Heart Beats | NHLBI, NIH Your heartbeat is the contraction of your heart to pump blood to your lungs and the rest of your body. Your heart's electrical system determines how fast your heart beats

Heart disease - Diagnosis and treatment - Mayo Clinic Learn about symptoms, causes and treatment of cardiovascular disease, a term describing a wide range of conditions that can affect the heart

How Blood Flows through the Heart - NHLBI, NIH Oxygen-poor blood from the body enters your heart through two large veins called the superior and inferior vena cava. The blood enters the heart's right atrium and is pumped to

Cardiomyopathy - Symptoms and causes - Mayo Clinic Overview Cardiomyopathy (kahr-dee-o-my-OP-uh-thee) is a disease of the heart muscle. It causes the heart to have a harder time pumping blood to the rest of the body, which

What Is Coronary Heart Disease? - NHLBI, NIH Coronary heart disease is a type of heart disease that occurs when the arteries of the heart cannot deliver enough oxygen -rich blood to the heart muscle due to narrowing from

What Is Heart Failure? - NHLBI, NIH Heart failure is a condition that occurs when your heart can't pump enough blood for your body's needs. Learn about the symptoms, causes, risk factors, and treatments for

Coronary Heart Disease Risk Factors - NHLBI, NIH Your risk of coronary heart disease increases based on the number of risk factors you have and how serious they are. Some risk factors — such as high blood pressure and

Spotlight on UPFs: NIH explores link between ultra - NHLBI, NIH In addition to heart disease, studies have linked UPFs to weight gain, hypertension, type 2 diabetes, chronic obstructive pulmonary disease, cancer, and other problems. Studies

Cardiovascular Medicine in Phoenix - Mayo Clinic The cardiology and cardiovascular medicine team at Mayo Clinic in Phoenix, Arizona, specializes in treatment of complex heart and vascular conditions

Heart disease - Symptoms and causes - Mayo Clinic Symptoms of heart disease in the blood vessels Coronary artery disease is a common heart condition that affects the major blood vessels that supply the heart muscle. A

How the Heart Works - How the Heart Beats | NHLBI, NIH Your heartbeat is the contraction of your heart to pump blood to your lungs and the rest of your body. Your heart's electrical system determines how fast your heart beats

Heart disease - Diagnosis and treatment - Mayo Clinic Learn about symptoms, causes and treatment of cardiovascular disease, a term describing a wide range of conditions that can affect the heart

How Blood Flows through the Heart - NHLBI, NIH Oxygen-poor blood from the body enters your heart through two large veins called the superior and inferior vena cava. The blood enters the heart's right atrium and is pumped to

Cardiomyopathy - Symptoms and causes - Mayo Clinic Overview Cardiomyopathy (kahr-dee-o-my-OP-uh-thee) is a disease of the heart muscle. It causes the heart to have a harder time pumping blood to the rest of the body, which

What Is Coronary Heart Disease? - NHLBI, NIH Coronary heart disease is a type of heart disease that occurs when the arteries of the heart cannot deliver enough oxygen -rich blood to the heart muscle due to narrowing from

What Is Heart Failure? - NHLBI, NIH Heart failure is a condition that occurs when your heart can't pump enough blood for your body's needs. Learn about the symptoms, causes, risk factors, and treatments for

Coronary Heart Disease Risk Factors - NHLBI, NIH Your risk of coronary heart disease increases based on the number of risk factors you have and how serious they are. Some risk factors — such as high blood pressure and

Spotlight on UPFs: NIH explores link between ultra - NHLBI, NIH In addition to heart disease, studies have linked UPFs to weight gain, hypertension, type 2 diabetes, chronic obstructive pulmonary disease, cancer, and other problems. Studies

Cardiovascular Medicine in Phoenix - Mayo Clinic The cardiology and cardiovascular medicine team at Mayo Clinic in Phoenix, Arizona, specializes in treatment of complex heart and vascular conditions

Back to Home: http://www.speargroupllc.com