what is a conjugate in algebra

what is a conjugate in algebra is a fundamental concept that plays a critical role in various branches of mathematics, particularly in algebra. Understanding conjugates is essential for simplifying expressions, solving equations, and performing operations with complex numbers. This article will delve into the definition of a conjugate, its significance in algebra, especially with polynomials and complex numbers, and practical applications. We will explore how to identify conjugates, the mathematical properties associated with them, and their relevance in calculations. By the end, you will have a comprehensive grasp of what conjugates are and how they function in algebra.

- Definition of Conjugates
- Types of Conjugates
- Properties of Conjugates
- · Applications of Conjugates
- Examples of Conjugates
- Conclusion

Definition of Conjugates

A conjugate in algebra refers to a pair of mathematical entities that are related through a specific transformation. This transformation typically involves changing the sign of a term. The most common instances of conjugates occur with binomials and complex numbers. In essence, the conjugate of a

binomial expression is formed by changing the sign between two terms. For instance, the conjugate of (a + b) is (a - b). This concept is vital for simplifying expressions and rationalizing denominators.

Conjugates in Complex Numbers

In the context of complex numbers, the conjugate of a complex number of the form a + bi is a - bi, where a represents the real part and b represents the imaginary part. This relationship is particularly significant because multiplying a complex number by its conjugate yields a real number. The result is calculated as follows:

•
$$(a + bi)(a - bi) = a^2 + b^2$$

This product eliminates the imaginary unit, making it a key operation in complex number arithmetic.

Types of Conjugates

In algebra, there are primarily two types of conjugates: binomial conjugates and complex conjugates. Each type serves different purposes and is utilized in various mathematical scenarios.

Binomial Conjugates

Binomial conjugates are pairs of binomials where one is the negation of the other. For example, if we have a binomial (x + y), its conjugate is (x - y). These conjugates are particularly useful when it comes to simplifying expressions and rationalizing denominators in fractions. When multiplied together, binomial conjugates yield a difference of squares, which can be expressed as:

•
$$(x + y)(x - y) = x^2 - y^2$$

This property allows for simplification in many algebraic operations.

Complex Conjugates

Complex conjugates, as previously mentioned, involve the negation of the imaginary part of a complex number. This type is crucial in various applications, including solving polynomial equations with complex roots and performing operations in complex analysis. The use of complex conjugates is vital when calculating the magnitude of complex numbers, as it directly relates to the modulus of the complex number.

Properties of Conjugates

Conjugates exhibit several important properties that are beneficial for algebraic manipulation.

Understanding these properties can aid in simplifying expressions and solving equations effectively.

Multiplication of Conjugates

When you multiply a number by its conjugate, the result is always a non-negative real number. For example, if z = a + bi, then z conjugate(z) produces:

• z conjugate(z) =
$$(a + bi)(a - bi) = a^2 + b^2$$

This property is extensively used in rationalizing denominators and simplifying complex fractions.

Additive Property

Conjugates also have an additive property where the sum of a complex number and its conjugate yields a real number. For instance, if z = a + bi, then:

• z + conjugate(z) = (a + bi) + (a - bi) = 2a

This result is useful for isolating the real part of a complex number.

Applications of Conjugates

Conjugates find applications in various fields of mathematics, including algebra, calculus, and complex analysis. They are instrumental in simplifying expressions, solving equations, and performing operations with complex numbers.

Simplifying Expressions

One of the primary uses of conjugates is to simplify complex expressions. For example, when dealing with fractions that have a complex denominator, multiplying the numerator and denominator by the conjugate of the denominator can eliminate the imaginary part. This technique is known as rationalizing the denominator, which results in a simpler expression.

Solving Polynomial Equations

In polynomial equations, conjugates are essential for finding roots. If a polynomial has complex roots, they will always appear in conjugate pairs. For instance, if (a + bi) is a root of a polynomial, then (a - bi) must also be a root. This property aids in factorization and helps in determining the behavior of polynomial functions.

Examples of Conjugates

Let's look at some practical examples to illustrate the concept of conjugates and their applications in algebra.

Example 1: Conjugates of Binomials

Consider the binomial expression (3x + 4). Its conjugate is (3x - 4). When multiplied together, we get:

•
$$(3x + 4)(3x - 4) = (3x)^2 - (4)^2 = 9x^2 - 16$$

This simplification shows how conjugates can be used to transform expressions into a more manageable form.

Example 2: Conjugates of Complex Numbers

For the complex number (2 + 3i), its conjugate is (2 - 3i). Multiplying these together results in:

•
$$(2 + 3i)(2 - 3i) = 2^2 + 3^2 = 4 + 9 = 13$$

This illustrates how conjugates are used to calculate the modulus of a complex number, which is a fundamental operation in complex analysis.

Conclusion

Understanding what a conjugate in algebra is, along with its significance and applications, is crucial for anyone studying mathematics. Conjugates facilitate simplification, help solve equations, and enable a clearer understanding of complex numbers. By mastering the concept of conjugates, students can enhance their mathematical skills and apply these techniques to various problems in algebra and beyond.

Q: What is the conjugate of a complex number?

A: The conjugate of a complex number of the form a + bi is given by a - bi, where a is the real part and b is the imaginary part of the complex number.

Q: Why are conjugates important in algebra?

A: Conjugates are important because they simplify expressions, especially those involving complex numbers, and are essential for rationalizing denominators and solving polynomial equations.

Q: How do you multiply conjugates?

A: To multiply conjugates, you use the formula $(a + b)(a - b) = a^2 - b^2$ for binomials or $(a + bi)(a - bi) = a^2 + b^2$ for complex numbers, which results in a real number.

Q: Can conjugates be used with polynomials?

A: Yes, conjugates can be used with polynomials, particularly when solving for roots. If a polynomial has complex roots, those roots will appear in conjugate pairs.

Q: How do you rationalize a denominator using conjugates?

A: To rationalize a denominator, you multiply both the numerator and the denominator by the conjugate of the denominator. This eliminates any imaginary parts in the denominator.

Q: What happens when you add a complex number and its conjugate?

A: When you add a complex number and its conjugate, the result is a real number, specifically twice the real part of the complex number.

Q: Are all complex numbers conjugates?

A: No, complex numbers are not all conjugates of each other. Each complex number has exactly one conjugate, which is formed by negating its imaginary part.

Q: What is the geometric interpretation of complex conjugates?

A: Geometrically, complex conjugates are reflections of each other over the real axis in the complex plane. This means that if a complex number is represented as a point in the plane, its conjugate will be at an equal distance from the real axis in the opposite direction.

Q: How do you determine the conjugate of a polynomial?

A: The conjugate of a polynomial is determined by taking the conjugate of each of its complex roots. If the polynomial has a root a + bi, then a - bi will also be a root.

What Is A Conjugate In Algebra

Find other PDF articles:

http://www.speargroupllc.com/gacor1-23/pdf?trackid=HiC19-3353&title=public-speaking-advice.pdf

what is a conjugate in algebra: Commutative Algebra Oscar Zariski, Pierre Samuel, 2013-11-11 This second volume of our treatise on commutative algebra deals largely with three basic topics, which go beyond the more or less classical material of volume I and are on the whole of a more advanced nature and a more recent vintage. These topics are: (a) valuation theory; (b) theory of polynomial and power series rings (including generalizations to graded rings and modules); (c) local algebra. Because most of these topics have either their source or their best motivation in algebraic geom etry, the algebro-geometric connections and applications of the purely algebraic material are constantly stressed and abundantly scattered through out the exposition. Thus, this volume can be used in part as an introduc tion to some basic concepts and the arithmetic foundations of algebraic geometry. The reader who is not immediately concerned with geometric applications may omit the algebro-geometric material in a first reading (see Instructions to the reader, page vii), but it is only fair to say that many a reader will find it more instructive to find out immediately what is the geometric motivation behind the purely algebraic material of this volume.

The first 8 sections of Chapter VI (including § 5bis) deal directly with properties of places, rather than with those of the valuation associated with a place. These, therefore, are properties of valuations in which the value group of the valuation is not involved.

what is a conjugate in algebra: <u>Commutative Algebra II</u> O. Zariski, P. Samuel, 1976-03-29 From the Preface: topics are: (a) valuation theory; (b) theory of polynomial and power series rings (including generalizations to graded rings and modules); (c) local algebra... the algebro-geometric connections and applications of the purely algebraic material are constantly stressed and abundantly scattered throughout the exposition. Thus, this volume can be used in part as an introduction to some basic concepts and the arithmetic foundations of algebraic geometry.

what is a conjugate in algebra: Commutative Algebra, Volume II Oscar Zariski, Pierre Samuel, 2019-11-13 The second text in this two-book series extends the classical material of Volume I, which focuses on field theory and the ideal theory of Noetherian rings and Dedekind domains. The connection of Volume II's material to algebraic geometry is stressed throughout the presentation, making this book a practical introduction to some basic concepts and the arithmetical foundations of algebraic geometry. The opening chapter deals with properties of places and is followed by a chapter that explores the classical properties of polynomial and power series rings and their applications to algebraic geometry. The final chapter examines the theory of local rings, which provides the algebraic basis for the local study of algebraic and analytical varieties. Several helpful Appendixes conclude the text.

what is a conjugate in algebra: Elementary and Analytic Theory of Algebraic Numbers
Wladyslaw Narkiewicz, 2013-06-29 The aim of this book is to present an exposition of the theory of
alge braic numbers, excluding class-field theory and its consequences. There are many ways to
develop this subject; the latest trend is to neglect the classical Dedekind theory of ideals in favour of
local methods. However, for numeri cal computations, necessary for applications of algebraic
numbers to other areas of number theory, the old approach seems more suitable, although its
exposition is obviously longer. On the other hand the local approach is more powerful for analytical
purposes, as demonstrated in Tate's thesis. Thus the author has tried to reconcile the two
approaches, presenting a self-contained exposition of the classical standpoint in the first four
chapters, and then turning to local methods. In the first chapter we present the necessary tools from
the theory of Dedekind domains and valuation theory, including the structure of finitely generated
modules over Dedekind domains. In Chapters 2, 3 and 4 the class sical theory of algebraic numbers is
developed. Chapter 5 contains the fun damental notions of the theory of p-adic fields, and Chapter 6
brings their applications to the study of algebraic number fields. We include here Shafare vich's
proof of the Kronecker-Weber theorem, and also the main properties of adeles and ideles.

what is a conjugate in algebra: A Physicists Introduction to Algebraic Structures Palash B. Pal, 2019-05-23 Algebraic structures including vector space, groups, topological spaces and more, all covered in one volume, showing the mutual connections.

what is a conjugate in algebra: KWIC Index for Numerical Algebra Alston Scott Householder, 1972

what is a conjugate in algebra: Polynomial Algorithms in Computer Algebra Franz Winkler, 2012-12-06 For several years now I have been teaching courses in computer algebra at the Universitat Linz, the University of Delaware, and the Universidad de Alcala de Henares. In the summers of 1990 and 1992 I have organized and taught summer schools in computer algebra at the Universitat Linz. Gradually a set of course notes has emerged from these activities. People have asked me for copies of the course notes, and different versions of them have been circulating for a few years. Finally I decided that I should really take the time to write the material up in a coherent way and make a book out of it. Here, now, is the result of this work. Over the years many students have been helpful in improving the quality of the notes, and also several colleagues at Linz and elsewhere have contributed to it. I want to thank them all for their effort, in particular I want to thank B. Buchberger, who taught me the theory of Grabner bases nearly two decades ago, B. F. Caviness and B. D. Saunders, who first stimulated my interest in various problems in computer

algebra, G. E. Collins, who showed me how to compute in algebraic domains, and J. R. Sendra, with whom I started to apply computer algebra methods to problems in algebraic geometry. Several colleagues have suggested improvements in earlier versions of this book. However, I want to make it clear that I am responsible for all remaining mistakes.

what is a conjugate in algebra: Algebraic and Geometric Combinatorics E. Mendelsohn, 1982-01-01 Algebraic and Geometric Combinatorics

what is a conjugate in algebra: Elementary Algebra George Hervey Hallett, Robert Franklin Anderson, 1917

what is a conjugate in algebra: Theory of Operator Algebras I Masamichi Takesaki, 2012-12-06 Mathematics for infinite dimensional objects is becoming more and more important today both in theory and application. Rings of operators, renamed von Neumann algebras by J. Dixmier, were first introduced by J. von Neumann fifty years ago, 1929, in [254] with his grand aim of giving a sound foundation to mathematical sciences of infinite nature. J. von Neumann and his collaborator F. J. Murray laid down the foundation for this new field of mathematics, operator algebras, in a series of papers, [240], [241], [242], [257] and [259], during the period of the 1930s and early in the 1940s. In the introduction to this series of investigations, they stated Their solution 1 (to the problems of understanding rings of operators) seems to be essential for the further advance of abstract operator theory in Hilbert space under several aspects. First, the formal calculus with operator-rings leads to them. Second, our attempts to generalize the theory of unitary group-representations essentially beyond their classical frame have always been blocked by the unsolved questions connected with these problems. Third, various aspects of the quantum mechanical formalism suggest strongly the elucidation of this subject. Fourth, the knowledge obtained in these investigations gives an approach to a class of abstract algebras without a finite basis, which seems to differ essentially from all types hitherto investigated. Since then there has appeared a large volume of literature, and a great deal of progress has been achieved by many mathematicians.

what is a conjugate in algebra: Lie Groups and Lie Algebras III A.L. Onishchik, E.B. Vinberg, 1994-07-12 A comprehensive and modern account of the structure and classification of Lie groups and finite-dimensional Lie algebras, by internationally known specialists in the field. This Encyclopaedia volume will be immensely useful to graduate students in differential geometry, algebra and theoretical physics.

what is a conjugate in algebra: An Introduction to Abstract Algebra John W. Lawrence, Frank A. Zorzitto, 2021-04-15 A lucid guide to abstract algebra, this comprehensive textbook provides in depth coverage for upper undergraduate students.

what is a conjugate in algebra: Encyclopaedia of Mathematics Michiel Hazewinkel, 2013-12-01 This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.

what is a conjugate in algebra: *Modular Representation Theory and Commutative Banach Algebras* David J. Benson, 2024-07-25 View the abstract.

what is a conjugate in algebra: The Theory of Substitutions and Its Application to Algebra Eugen Netto, 1892

what is a conjugate in algebra: Elements of Algebra Henry Sinclair Hall, 1918 what is a conjugate in algebra: Linear Algebra: Theory and Applications Kenneth Kuttler, 2012-01-29 This is a book on linear algebra and matrix theory. While it is self contained, it will work best for those who have already had some exposure to linear algebra. It is also assumed that the reader has had calculus. Some optional topics require more analysis than this, however. I think that the subject of linear algebra is likely the most significant topic discussed in undergraduate mathematics courses. Part of the reason for this is its usefulness in unifying so many different topics. Linear algebra is essential in analysis, applied math, and even in theoretical mathematics. This is the point of view of this book, more than a presentation of linear algebra for its own sake. This is why there are numerous applications, some fairly unusual.

what is a conjugate in algebra: Lie Groups and Algebraic Groups Arkadij L. Onishchik, Ernest B. Vinberg, 2012-12-06 This book is based on the notes of the authors' seminar on algebraic and Lie groups held at the Department of Mechanics and Mathematics of Moscow University in 1967/68. Our guiding idea was to present in the most economic way the theory of semisimple Lie groups on the basis of the theory of algebraic groups. Our main sources were A. Borel's paper [34], C. Chevalley's seminar [14], seminar Sophus Lie [15] and monographs by C. Chevalley [4], N. Jacobson [9] and J-P. Serre [16, 17]. In preparing this book we have completely rearranged these notes and added two new chapters: Lie groups and Real semisimple Lie groups. Several traditional topics of Lie algebra theory, however, are left entirely disregarded, e.g. universal enveloping algebras, characters of linear representations and (co)homology of Lie algebras. A distinctive feature of this book is that almost all the material is presented as a sequence of problems, as it had been in the first draft of the seminar's notes. We believe that solving these problems may help the reader to feel the seminar's atmosphere and master the theory. Nevertheless, all the non-trivial ideas, and sometimes solutions, are contained in hints given at the end of each section. The proofs of certain theorems, which we consider more difficult, are given directly in the main text. The book also contains exercises, the majority of which are an essential complement to the main contents.

what is a conjugate in algebra: Introduction to Lie Algebras and Representation Theory JAMES HUMPHREYS, 1994-10-27 This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are admittedly a little more demanding. Besides being useful in many parts of mathematics and physics, the theory of semisimple Lie algebras is inherently attractive, combining as it does a certain amount of depth and a satisfying degree of completeness in its basic results. Since Jacobson's book appeared a decade ago, improvements have been made even in the classical parts of the theory. I have tried to incor porate some of them here and to provide easier access to the subject for non-specialists. For the specialist, the following features should be noted: (I) The Jordan-Chevalley decomposition of linear transformations is emphasized, with toral subalgebras replacing the more traditional Cartan subalgebras in the semisimple case. (2) The conjugacy theorem for Cartan subalgebras is proved (following D. J. Winter and G. D. Mostow) by elementary Lie algebra methods, avoiding the use of algebraic geometry.

what is a conjugate in algebra: Classical Algebraic Geometry Igor V. Dolgachev, 2012-08-16 This detailed exposition makes classical algebraic geometry accessible to the modern mathematician.

Related to what is a conjugate in algebra

- **5 Best Adjustable Beds of 2025, Tested by Experts Good** We tested the best adjustable beds for personalized comfort at various prices and features, including adjustable bases for seniors and back pain sufferers
- **5 Best Adjustable Beds 2025 The National Council on Aging** To help you narrow down your options, our team carefully researched and tested dozens of adjustable beds. We looked at factors like ease of use, smooth movements, and

Adjustable Beds | Costco Shop Adjustable Beds Online - Explore a variety of adjustable beds online at Costco for ultimate sleeping comfort

: Adjustable Beds Queen Adjustable Bed Frame with Remote, Adjustable Bed Base with Massage Head & Foot Incline, LED Light, USB Ports, Electric Bed Frame with Height-Adjustable Legs (Oueen)

Best Adjustable Beds 2025 - Forbes Vetted The best adjustable beds offer customizable comfort and ample support. After consulting experts, we found the eight best, from Tempur-Pedic, Saatva and more

The Best Adjustable Beds of 2025: Tested by the Sleep Experts Beyond being able to raise and lower your head and feet for the most comfortable positions for sleep, watching TV, and reading, adjustable beds offer a range of other features,

The 7 Best Adjustable Beds, Tested by BHG We tested 16 different adjustable beds at home, evaluating each one on its comfort, design, setup, and mattress compatibility. The smart base analyzes your nightly activity to help

Best Adjustable Beds (2025) | Expert Tested & Doctor Approved Looking for the best adjustable bed? We've got you covered. Discover our complete list of tests and reviews on the most popular adjustable beds here

Adjustable beds You'll Love - Wayfair Upgrade your sleep experience with this massaging zero gravity adjustable bed. Designed for personalized comfort and support, this bed comes with a wireless remote that lets you easily

Best Adjustable Beds 2025 and Buying Guide - Slumberland Elevate your sleep. Find the best adjustable bed frames to relieve pain, reduce snoring, and improve sleep quality. Read expert reviews & buying guides

() The Twilight Zone Season 1 - Rod Serling's seminal anthology series fo	ocused
on ordinary folks who suddenly found themselves in ex	

Restaurant Le Belvédère | Fribourg Le restaurant est complet ? Pensez à notre deuxième établissement, le restaurant Le Grand-Pont où nous proposons également un service le dimanche. Nous avons également différents

Café-Restaurant du Belvédère - GastroFribourg Café-Restaurant du Belvédère Café-Restaurant du Belvédère Grand-Rue 36 1700 Fribourg Schweiz Baptiste Savio 026 323 44 08 Per E-Mail kontaktieren

Restaurant du Belvédère | **Freiburg Stadt** Saisonale Küche und ein atemberaubender Blick auf die Stadt - perfekt für ein entspanntes Essen. Das Restaurant Le Belvédère in Freiburg bietet ein aussergewöhnliches kulinarisches

Karte: Fribourg, Grand-Rue 36 - Die interaktive Karte von Fribourg, Grand-Rue 36 mit aktuellen Informationen zu Verkehr, Gastronomie und mehr

Grand-Rue 36, 1700 Fribourg, Switzerland - Firmengeschichte Detailinformationen für 11 Datensätze unter Grand-Rue 36. Der älteste Datensatz für diese Adresse ist 28 Jahre alt und stammt von 1997. Die häufigste Kategorie ist Restaurants

LE BELVÉDÈRE, Fribourg - Menü, Preise & Restaurant - Tripadvisor Hard to describeit's a literature café, a night club called Mouton Noir and last but not least a restaurant, everything under a beautiful and over 800 years old roof

Café du Belvédère | Fribourg 04.09.25 APERITIVO DU BOURG événement spécial de 17:00 à 19:00

Restaurant Belvédère in Fribourg Das Restaurant Belvédère befindet sich an der Grand-Rue 36 in Fribourg, Schweiz. Es ist bekannt für seine exzellente Küche und seine atemberaubende Aussicht. Das Restaurant

Restaurant le Belvédère in Freiburg - Bewertungen - TheFork Finde Bewertungen, Speisekarte, Preise und Öffnungszeiten von Restaurant le Belvédère bei TheFork

Le Belvédère, 36 Grand'rue, Fribourg, 1700, CH - MapQuest Photos View gallery Photo by Mathi3458 Photo by Vincent G Photo by q-sto Photo by maryyy456 Photo by widemannj Photo by Management 36 Grand'rue Fribourg 1700 +41263234408

Self-Respect: Importance, Influences, and Strategies for Improvement This article explains the importance of respecting yourself and suggests some strategies to improve your sense of self-respect

How to Regain Your Self-Respect and Why It Matters What is self-respect? Self-respect is loving yourself and treating yourself with care. It's the result of staying true to your values and not being willing to compromise

5 Tips for Developing Self-Respect - Psychology Today Experts have defined self-respect in a myriad of ways and in a variety of contexts. Psychological researchers, in particular, often define self-respect as an act of honoring your

Self Respect: 15 Ways to Respect Yourself in 2025 - Declutter The It's important to respect yourself. Learn 15 ways to practice self respect and why it's so hard to for us to do sometimes

Why is Self-Respect Important: 8 Reasons Why It Matters That's self-respect talking. Self-respect is so important for living your best life, but it can be tricky to define and build. In this post, we'll go over a list of reasons why self-respect

Self-Respect: Definition, Examples, & How To Gain It What is self-respect and what can we do to respect ourselves more? Find out why you may lack self-respect and how to gain it

How To Gain Self-Respect (13 easy steps to respect yourself) Write these down and use the strategies in this article to come up with actions to address your lack of respect for yourself. Focus on your values and integrity and how you can

What Is Self Respect and Why Is It Important? - UpJourney Self-respect is the knowledge that you know your self-worth and that you expect to be treated well and respectfully as a result. Having self-respect helps others to see and treat

SELF-RESPECT Definition & Meaning - Merriam-Webster The meaning of SELF-RESPECT is a proper respect for oneself as a human being. How to use self-respect in a sentence

How to Respect Yourself: 15 Confidence-Building Strategies In this comprehensive guide, we'll share 15 strategies to help you build self-respect along with expert tips from life coaches and psychologists. How do you respect yourself? Build

Related to what is a conjugate in algebra

A Note on Cocycle-Conjugate Endomorphisms of von Neumann Algebras (JSTOR Daily21y) This is a preview. Log in through your library . Abstract We show that two cocycle-conjugate endomorphisms of an arbitrary von Neumann algebra that satisfy certain stability conditions are conjugate

A Note on Cocycle-Conjugate Endomorphisms of von Neumann Algebras (JSTOR Daily21y) This is a preview. Log in through your library . Abstract We show that two cocycle-conjugate endomorphisms of an arbitrary von Neumann algebra that satisfy certain stability conditions are conjugate

Back to Home: http://www.speargroupllc.com