whole numbers definition algebra

whole numbers definition algebra is a fundamental concept in mathematics, particularly in the realm of algebra. Whole numbers are integral to understanding numerical operations, expressions, and equations. This article will explore the definition of whole numbers, their properties, how they relate to algebraic concepts, and their significance in mathematics. Additionally, we will discuss examples of whole numbers, their applications in algebra, and common misconceptions surrounding them. By the end of this article, readers will have a comprehensive understanding of whole numbers within the context of algebra.

- Understanding Whole Numbers
- Properties of Whole Numbers
- Whole Numbers in Algebra
- Examples of Whole Numbers
- Common Misconceptions about Whole Numbers
- · Applications of Whole Numbers in Real Life
- Conclusion

Understanding Whole Numbers

Whole numbers are defined as the set of non-negative integers, which include zero and all positive integers. In mathematical terms, the set of whole numbers can be represented as {0, 1, 2, 3, 4, ...}. This definition distinguishes whole numbers from other types of numbers such as fractions, decimals, and negative integers. Whole numbers play a crucial role in various mathematical operations and are foundational in the field of algebra.

The concept of whole numbers is essential for performing basic arithmetic operations, such as addition, subtraction, multiplication, and division. Whole numbers are utilized in counting and ordering, making them vital for everyday tasks as well as advanced mathematical concepts. Understanding whole numbers is the first step towards comprehending more complex numerical systems.

Properties of Whole Numbers

Whole numbers possess several fundamental properties that are essential for their application in mathematics. Recognizing these properties can help in solving algebraic problems more effectively. The primary properties of whole numbers include:

- Closure Property: The sum or product of any two whole numbers is always a whole number. For example, 2 + 3 = 5 and 4 × 5 = 20.
- Commutative Property: The order in which two whole numbers are added or multiplied does not change the result. For instance, 3 + 4 = 4 + 3 and $5 \times 6 = 6 \times 5$.
- Associative Property: When adding or multiplying three or more whole numbers, the grouping of the numbers does not affect the result. For example, (1 + 2) + 3 = 1 + (2 + 3).
- Identity Property: The identity element for addition is 0, while for multiplication, it is 1. This
 means, for any whole number a, a + 0 = a and a × 1 = a.

• Distributive Property: This property states that a × (b + c) = (a × b) + (a × c), which is crucial for simplifying algebraic expressions.

Understanding these properties not only aids in solving mathematical problems but also forms the basis for more complex algebraic manipulations. They are foundational for developing a deeper understanding of algebraic structures and equations.

Whole Numbers in Algebra

Whole numbers are integral to algebra and are often used in various algebraic expressions and equations. In algebra, whole numbers can serve as coefficients, constants, and variables. Their role varies depending on the context of the problem being addressed.

For example, in a simple algebraic equation such as 2x + 3 = 7, both 2 and 3 are whole numbers. The value of x can also be a whole number if the equation is solved correctly. The understanding of whole numbers allows students to manipulate equations effectively, ensuring they can isolate variables or simplify expressions.

Using Whole Numbers in Algebraic Equations

When solving algebraic equations involving whole numbers, several methods can be employed:

- Substitution: This involves replacing a variable with a whole number to simplify the equation.
- Factoring: Whole numbers can be factored to find roots of quadratic equations.

Graphing: Whole numbers can be represented on a graph to analyze the behavior of functions.
Using Properties: Applying the properties of whole numbers can help simplify complex algebraic expressions.
These methods highlight the versatile nature of whole numbers in algebra and illustrate how they function as building blocks for more complex mathematical theories.
Examples of Whole Numbers
Examples of whole numbers include a wide range of integers starting from zero and extending infinitely in the positive direction. Some common examples are:
• 0
• 1
• 2
• 3
• 10
• 25
• 100

These examples can be used in various mathematical contexts, from basic counting to more complex algebraic equations. Whole numbers are particularly useful in practical applications, such as quantifying items, measuring distances, or calculating scores in games.

Common Misconceptions about Whole Numbers

Despite their straightforward definition, there are several misconceptions surrounding whole numbers. Addressing these misunderstandings is essential for a clear comprehension of mathematics. Some common misconceptions include:

- Whole Numbers Include Negative Numbers: Some may mistakenly believe that whole numbers can be negative. However, whole numbers are defined strictly as non-negative integers.
- Whole Numbers Are the Same as Integers: While all whole numbers are integers, not all integers
 are whole numbers, as integers include negative values.
- Zero Is Not a Whole Number: A common myth is that zero is excluded from whole numbers. In fact, zero is a fundamental part of the whole number set.

By clarifying these misconceptions, learners can develop a more accurate understanding of whole numbers and their applications in algebra.

Applications of Whole Numbers in Real Life

Whole numbers are not just theoretical constructs; they have practical applications in everyday life. Some of the most common applications include:

- Counting: Whole numbers are used for counting objects, people, and items in various contexts.
- Financial Transactions: Whole numbers are often used in accounting and finance to represent whole units of currency.
- Scoring Systems: In games and sports, whole numbers are used to keep track of scores, points, and rankings.
- Measurements: Whole numbers are applied in measuring quantities, such as distance, weight, and volume.

These applications demonstrate the relevance of whole numbers in various fields, highlighting their importance beyond academic study.

Conclusion

Whole numbers are a vital part of the mathematical landscape, especially in algebra. Understanding their definition, properties, and applications provides a strong foundation for further mathematical exploration. By recognizing the role whole numbers play in equations and real-life situations, students and learners can appreciate their significance in both educational and practical contexts. Mastery of whole numbers is the first step towards achieving proficiency in algebra and beyond.

Q: What are whole numbers in algebra?

A: Whole numbers in algebra are defined as the set of non-negative integers, including zero and all positive integers. They are essential for performing basic arithmetic operations and solving algebraic equations.

Q: Are negative numbers considered whole numbers?

A: No, negative numbers are not considered whole numbers. Whole numbers include only non-negative integers: 0, 1, 2, 3, and so on.

Q: Can whole numbers be used in algebraic equations?

A: Yes, whole numbers can be used as coefficients, constants, and variables in algebraic equations, making them integral to algebraic expressions and calculations.

Q: What properties do whole numbers have?

A: Whole numbers have several properties, including closure, commutativity, associativity, identity, and distributivity. These properties are fundamental for performing mathematical operations involving whole numbers.

Q: How do whole numbers differ from integers?

A: Whole numbers are a subset of integers. While whole numbers include zero and positive integers, integers encompass both negative and positive whole numbers, as well as zero.

Q: What are some real-life applications of whole numbers?

A: Whole numbers are used in various real-life applications, such as counting objects, financial transactions, scoring systems in games, and measurements of distance, weight, and volume.

Q: Is zero considered a whole number?

A: Yes, zero is considered a whole number. It is the smallest whole number and is included in the set of whole numbers.

Q: How do whole numbers contribute to algebraic problem-solving?

A: Whole numbers contribute to algebraic problem-solving by serving as coefficients, constants, and variables in equations. They are also used in various algebraic methods such as substitution, factoring, and graphing.

Q: Are fractions considered whole numbers?

A: No, fractions are not considered whole numbers. Whole numbers are restricted to non-negative integers, whereas fractions represent parts of whole numbers.

Q: Why is understanding whole numbers important in mathematics?

A: Understanding whole numbers is crucial because they form the foundation of arithmetic and algebra. Mastery of whole numbers is essential for progressing to more complex mathematical concepts and operations.

Whole Numbers Definition Algebra

Find other PDF articles:

http://www.speargroupllc.com/algebra-suggest-002/pdf?dataid=dpo22-9321&title=algebra-3.pdf

whole numbers definition algebra: Teaching School Mathematics: Pre-Algebra Hung-Hsi Wu:, 2016-06-29 This is a systematic exposition of a major part of the mathematics of grades 5 to 8 (excluding statistics), written specifically for Common Core era teachers. It differs from other books for teachers in that the mathematics is correct, in the sense that all the concepts are clearly and correctly defined, and a grade-appropriate explanation (that is, proof) is given for every assertion. For example, it gives a precise definition of percent and explains how to use the definition to do all the standard problems about percent in an entirely routine manner. It also gives a leisurely explanation for "negative times negative is positive". Another key feature is an intuitive introduction to plane geometry via rotations, translations, reflections, and dilations that, instead of treating these transformations as merely fun activities, shows how they make sense of the usual geometric topics in middle school, including congruence, similarity, length, area, and volume. In short, the readers will find in this volume a clear explanation of whatever was once puzzling to them in the mathematics of grades 5 to 8.

whole numbers definition algebra: 45 Essential Number Theory Concepts Explored in 7 Minutes Each Nietsnie Trebla, 45 Essential Number Theory Concepts Explored in 7 Minutes Each Unlock the mysteries of numbers in this concise and engaging guide, 45 Essential Number Theory Concepts Explored in 7 Minutes Each. Perfect for students, educators, and number enthusiasts alike, this book breaks down complex concepts into digestible segments that can be understood in just a few minutes. The journey begins with an Introduction to Number Theory, laying the foundation for deeper exploration of the subject. From Prime Numbers and Composite Numbers to the intricacies of the Euclidean Algorithm and Modular Arithmetic, each chapter unveils essential theories and methodologies that have influenced mathematics for centuries. Understand the importance of Fermat's Little Theorem, Euler's Theorem, and discover the Chinese Remainder Theorem, along with fascinating concepts like Perfect Numbers and Amicable Numbers. Explore Number Patterns and Sequences and delve into advanced topics like Diophantine Equations and Pythagorean Triples. Learn how the Sieve of Eratosthenes revolutionized prime number discovery and appreciate the foundations of Cryptography in the digital age with insights into the RSA Algorithm and Public Key Cryptography. Discover the applications of number theory in computer science, including Hash Functions and Algorithm Complexity. The book culminates with explorations of ongoing mathematical mysteries such as the Goldbach Conjecture and the Twin Prime Conjecture, while summarizing the future potential of this vibrant field. Each chapter is designed to be guick yet profound, allowing readers to grasp essential number theory concepts efficiently. Ideal for anyone looking to strengthen their mathematical foundation or simply satiate their curiosity about the numbers that shape our world. Whether you're a novice or a seasoned mathematician, 45 Essential Number Theory Concepts Explored in 7 Minutes Each is your essential companion for a fast-paced journey through the fascinating landscape of number theory.

whole numbers definition algebra: Teaching School Mathematics: Algebra Hung-Hsi Wu, 2016-08-10 This is a systematic exposition of introductory school algebra written specifically for Common Core era teachers. The emphasis of the exposition is to give a mathematically correct treatment of introductory algebra. For example, it explains the proper use of symbols, why "variable" is not a mathematical concept, what an equation is, what equation-solving means, how to define the slope of a line correctly, why the graph of a linear equation in two variables is a straight line, why every straight line is the graph of a linear equation in two variables, how to use the shape

of the graph of a quadratic function as a guide for the study of quadratic functions, how to define a parabola correctly, why the graph of a quadratic function is a parabola, why all parabolas are similar, etc. This exposition of algebra makes full use of the geometric concepts of congruence and similarity, and it justifies why the Common Core Standards on algebra are written the way they are.

whole numbers definition algebra: The Humongous Book of Algebra Problems W. Michael Kelley, 2013-11-07 When the numbers just don't add up... Following in the footsteps of the successful The Humongous Books of Calculus Problems, bestselling author Michael Kelley has taken a typical algebra workbook, and made notes in the margins, adding missing steps and simplifying concepts and solutions. Students will learn how to interpret and solve 1000 problems as they are typically presented in algebra courses-and become prepared to solve those problems that were never discussed in class but always seem to find their way onto exams. Annotations throughout the text clarify each problem and fill in missing steps needed to reach the solution, making this book like no other algebra workbook on the market.

whole numbers definition algebra: A System of Popular Algebra ... With a section on proportions and progressions George DARLEY, 1836

whole numbers definition algebra: A Syllabus of Algebra. First part , 1835 whole numbers definition algebra: Kendall/Hunt Pre-algebra Teacher Guide ,

whole numbers definition algebra: Intermediate Algebra Charles P. McKeague, 2014-05-10 Intermediate Algebra: A Text/Workbook, Second Edition focuses on the principles, operations, and approaches involved in intermediate algebra. The publication first takes a look at basic properties and definitions, first-degree equations and inequalities, and exponents and polynomials. Discussions focus on properties of exponents, polynomials, sums, and differences, multiplication of polynomials, inequalities involving absolute value, word problems, first-degree inequalities, real numbers, opposites, reciprocals, and absolute value, and addition and subtraction of real numbers. The text then examines rational expressions, quadratic equations, and rational expressions and roots. Topics include completing the square, quadratic formula, multiplication and division of radical expressions, equations with radicals, basic properties and reducing to lowest terms, and addition and subtraction of rational expression. The book takes a look at logarithms, relations and functions, conic sections, and systems of linear equations, including introduction to determinants, systems of linear equations in three variables, ellipses and hyperbolas, nonlinear systems, function notation, inverse of a function, and exponential equations and change of base. The publication is a valuable reference for students and researchers interested in intermediate algebra.

whole numbers definition algebra: Mathematical Instruction in France Raymond Clare Archibald, 1911

whole numbers definition algebra: The Whole Truth About Whole Numbers Sylvia Forman, Agnes M. Rash, 2015-01-02 The Whole Truth About Whole Numbers is an introduction to the field of Number Theory for students in non-math and non-science majors who have studied at least two years of high school algebra. Rather than giving brief introductions to a wide variety of topics, this book provides an in-depth introduction to the field of Number Theory. The topics covered are many of those included in an introductory Number Theory course for mathematics majors, but the presentation is carefully tailored to meet the needs of elementary education, liberal arts, and other non-mathematical majors. The text covers logic and proofs, as well as major concepts in Number Theory, and contains an abundance of worked examples and exercises to both clearly illustrate concepts and evaluate the students' mastery of the material.

whole numbers definition algebra: Theory of conjugate functions, or algebraic couples Sir William Rowan Hamilton, 1835

whole numbers definition algebra: A University Algebra Edward Olney, 1880 whole numbers definition algebra: Mathematics for Secondary School Teachers Elizabeth G. Bremigan, Ralph J. Bremigan, John D. Lorch, 2011 Mathematics for Secondary School Teachers discusses topics of central importance in the secondary school mathematics curriculum, including functions, polynomials, trigonometry, exponential and logarithmic functions, number and

operation, and measurement. Acknowledging diversity in the mathematical backgrounds of pre-service teachers and in the goals of teacher preparation programs, the authors have written a flexible text, through which instructors can emphasize any of the following: Basics: exploration of key pre-college topics from intuitive and rigorous points of view; Connections: exploration of relationships among topics, using tools from college-level mathematics; Extensions: exploration of college-level mathematical topics that have a compelling relationship to pre-college mathematics. Mathematics for Secondary School Teachers provides a balance of discovery learning and direct instruction. Activities and exercises address the range of learning objectives appropriate for future teachers. Beyond the obvious goals of conceptual understanding and computational fluency, readers are invited to devise mathematical explanations and arguments, create examples and visual representations, remediate typical student errors and misconceptions, and analyze student work. Introductory discussion questions encourage prospective teachers to take stock of their knowledge of pre-college topics. A rich collection of exercises of widely varying degrees of difficulty is integrated with the text. Activities and exercises are easily adapted to the settings of individual assignments, group projects, and classroom discussions. Mathematics for Secondary School Teachers is primarily intended as the text for a bridge or capstone course for pre-service secondary school mathematics teachers. It can also be used in alternative licensure programs, as a supplement to a mathematics methods course, as the text for a graduate course for in-service teachers, and as a resource and reference for in-service faculty development.

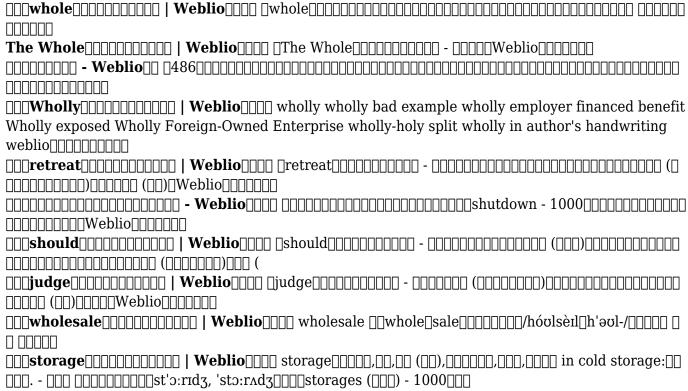
whole numbers definition algebra: Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences Ivor Grattan-Guinness, 2002-09-11 * Examines the history and philosophy of the mathematical sciences in a cultural context, tracing their evolution from ancient times up to the twentieth century * 176 articles contributed by authors of 18 nationalities * Chronological table of main events in the development of mathematics * Fully integrated index of people, events and topics * Annotated bibliographies of both classic and contemporary sources * Unique coverage of Ancient and non-Western traditions of mathematics

whole numbers definition algebra: Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences I. Grattan-Guinness, 2003 The first book of a two-volume encyclopaedia which makes the vast and varied history of mathematics available in a reasonably compact format. The book offers in-depth accounts of the principal areas of activity up to the 1930s and touches on related topics, including ethnomathematics.

whole numbers definition algebra: Algebra I All-in-One For Dummies Mary Jane Sterling, 2021-11-18 Solve for 'X' with this practical and easy guide to everything algebra A solid understanding of algebra is the key to unlocking other areas of math and science that rely on the concepts and skills that happen in a foundational Algebra class. Algebra I All-In-One For Dummies is the key! With it, you'll get everything you need to solve the mystery of Algebra I. This book proves that algebra is for everyone with straightforward, unit-based instruction, hundreds of examples and practice problems, and two guizzes for every chapter - one in the book and another (totally different!) online. From graph and word problems to the FOIL method and common algebra terminology, Algebra I All-In-One For Dummies walks you step-by-step through ALL the concepts you need to know to slay your Algebra I class. In this handy guide, you'll also: Receive instruction and tips on how to handle basic and intermediate algebraic tasks such as factoring and equation simplification Banish math anxiety forever by developing an intuitive understanding of how algebra works Get a handle on graphing problems and functions, as well as inequalities and word problems Algebra I All-In-One For Dummies is a must-read for Algebra students looking for an everything-in-one-book supplement to their coursework, as well as anyone hoping to brush up on their math before tackling a related subject, such as physics, chemistry, or a more advanced math topic.

whole numbers definition algebra: The Nature and Role of Algebra in the K-14 Curriculum National Research Council, National Council of Teachers of Mathematics and Mathematical Sciences Education Board, Center for Science, Mathematics, and Engineering Education, 1998-10-23 With the

1989 release of Everybody Counts by the Mathematical Sciences Education Board (MSEB) of the National Research Council and the Curriculum and Evaluation Standards for School Mathematics by the National Council of Teachers of Mathematics (NCTM), the standards movement in K-12 education was launched. Since that time, the MSEB and the NCTM have remained committed to deepening the public debate, discourse, and understanding of the principles and implications of standards-based reform. One of the main tenets in the NCTM Standards is commitment to providing high-quality mathematical experiences to all students. Another feature of the Standards is emphasis on development of specific mathematical topics across the grades. In particular, the Standards emphasize the importance of algebraic thinking as an essential strand in the elementary school curriculum. Issues related to school algebra are pivotal in many ways. Traditionally, algebra in high school or earlier has been considered a gatekeeper, critical to participation in postsecondary education, especially for minority students. Yet, as traditionally taught, first-year algebra courses have been characterized as an unmitigated disaster for most students. There have been many shifts in the algebra curriculum in schools within recent years. Some of these have been successful first steps in increasing enrollment in algebra and in broadening the scope of the algebra curriculum. Others have compounded existing problems. Algebra is not yet conceived of as a K-14 subject. Issues of opportunity and equity persist. Because there is no one answer to the dilemma of how to deal with algebra, making progress requires sustained dialogue, experimentation, reflection, and communication of ideas and practices at both the local and national levels. As an initial step in moving from national-level dialogue and speculations to concerted local and state level work on the role of algebra in the curriculum, the MSEB and the NCTM co-sponsored a national symposium, The Nature and Role of Algebra in the K-14 Curriculum, on May 27 and 28, 1997, at the National Academy of Sciences in Washington, D.C.


whole numbers definition algebra: Algebra and Number Theory Martyn R. Dixon, Leonid A. Kurdachenko, Igor Ya Subbotin, 2011-07-15 Explore the main algebraic structures and number systems that play a central role across the field of mathematics Algebra and number theory are two powerful branches of modern mathematics at the forefront of current mathematical research, and each plays an increasingly significant role in different branches of mathematics, from geometry and topology to computing and communications. Based on the authors' extensive experience within the field, Algebra and Number Theory has an innovative approach that integrates three disciplines—linear algebra, abstract algebra, and number theory—into one comprehensive and fluid presentation, facilitating a deeper understanding of the topic and improving readers' retention of the main concepts. The book begins with an introduction to the elements of set theory. Next, the authors discuss matrices, determinants, and elements of field theory, including preliminary information related to integers and complex numbers. Subsequent chapters explore key ideas relating to linear algebra such as vector spaces, linear mapping, and bilinear forms. The book explores the development of the main ideas of algebraic structures and concludes with applications of algebraic ideas to number theory. Interesting applications are provided throughout to demonstrate the relevance of the discussed concepts. In addition, chapter exercises allow readers to test their comprehension of the presented material. Algebra and Number Theory is an excellent book for courses on linear algebra, abstract algebra, and number theory at the upper-undergraduate level. It is also a valuable reference for researchers working in different fields of mathematics, computer science, and engineering as well as for individuals preparing for a career in mathematics education.

whole numbers definition algebra: An Intermediate Course in Algebra Alison Warr, Catherine Curtis, Penny Slingerland, 2001 This book was written to address the challenge of the NCTM and AMATYC Standards and technology integration in the classroom. The authors address the standards using a variety of methods, including Numerical, Graphical, and Algebraic Models; Guided Discovery Activities; Problem Solving; Technology; Collaborative Learning.

whole numbers definition algebra: Final Exam Review: Intermediate Algebra A. A. Frempong, Intermediate Algebra covers: Real Number Operations; Exponents; Radicals; Fractional Exponents; Factoring Polynomials; Solving quadratic equations and applications; Graphs, Slopes,

Intercepts, and Equations of Straight Lines; Graphs of Parabolas; Linear Inequalities; Compound Inequalities; Inequality Word Problems; Reduction, multiplication, division, and addition of algebraic fractions; Solving Fractional or Rational Equations; Solving Radical Equations; Variation and Variation Problems. Complex Numbers; Square roots of negative Numbers; addition, multiplication and division of complex Numbers; Absolute value equations; Absolute Value Inequalities; Logarithms; Logarithmic equations and Exponential Equations; Graphs of exponential and logarithmic functions; Applications of exponential and logarithmic functions.

Related to whole numbers definition algebra

RIIZE's Wonbin Shocks Fans With Dramatic Hair Transformation While the group's appearance was already highly anticipated, it was Wonbin's striking bright red hair that became the highlight of the day. Though Wonbin has tried different

RIIZE Wonbin's new hair has fans in full swoon mode - allkpop It seems SM Entertainment reflected fans' opinions and updated Wonbin's hair to a light brown and shortened the length of his hair

RIIZE's Wonbin Stuns Fans with Fiery Red Hair Transformation For those who've been following Wonbin's style journey, you know he tends to favor darker, more subdued shades like classic black and rich browns. That's precisely why

RIIZE Wonbin Red Hair Stuns Fans at Tokyo Concert RIIZE Wonbin's red hair has become the talk of the town among K-pop enthusiasts and Seoul Crushers everywhere. The striking makeover, which the RIIZE member debuted during a

"He's so hot and he knows it" — RIIZE fans are going crazy over Wonbin $\,$ Fans on an online forum shared preview photos revealing that Wonbin now sports a stylish dark blue hair color. Fans have captured this new look from various angles and lighting

#RIIZE's #Wonbin has recently captivated fans with a striking hair striking hair transformation. Known for his signature dark locks, Wonbin debuted a bold red hair color during a recent public appearance, sparking widespread attention and discussion among

RIIZE Wonbin Debuts Ethereal Curly Hair - K-POP LIFE Wonbin is taking the internet by storm yet again. The RIIZE member recently revealed a new look, sporting curly hair. Not surprisingly, netizens are loving the ethereal look

RIIZE's Wonbin Makes Shocking Transformation — Fans React RIIZE's Wonbin makes a

shocking transformation with his hair. He went from a natural dark shade to a light-bleached blond. Netizens react to the change

RIIZE's Wonbin Debuts New Hair Color, Netizens Can't Stop Admiring Preview images of Wonbin's new hair colour, which now appears to be a dark blue tone, were uploaded on an internet forum. Numerous pictures shot by fans of the game reveal

Netizens share mixed reactions to RIIZE Wonbin's new red hair Wearing a hat and a casual outfit, Wonbin showcased a laid-back yet bold look, with long, straight red hair adding edge to his

appearance
The Whole DODDOOD Weblio DODD The Whole DODDOOD - DODDOWeblio DODDO
0000000 - Weblio 00 0486000000000000000000000000000000000
Wholly exposed Wholly Foreign-Owned Enterprise wholly-holy split wholly in author's handwriting
weblio
000retreat0000000000 Weblio0000 0retreat00000000 - 000000000000000000000000000
00000000000000000000000000000000000000
000 should 0000000000 Weblio 0000
000 judge 000000000 Weblio 0000 0judge000000000 - 000000 (0000000)000000000000
000 whole 00000000 Weblio 0000 0whole000000000000000000000000000000000000
The Whole
00000000 - Weblio 00 0486000000000000000000000000000000000
Wholly exposed Wholly Foreign-Owned Enterprise wholly-holy split wholly in author's handwriting
weblio
000 retreat 000000000000000000000000000000000000

- DOStorage ____ - ___ _____st'ɔ:rɪdʒ, 'stɔ:rʌdʒ____storages (___) - 1000___

Weblio 1486
Wholly exposed Wholly Foreign-Owned Enterprise wholly-holy split wholly in author's handwriting
weblio[][][][][][]
retreat Weblio retreat (
00000000000000000000000000000000000000
shutdown - 1000
000 should 000000000 Weblio 0000
000 judge 000000000 Weblio 0000 0judge000000000 - 000000 (0000000)000000000000
$\verb $
$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$
□□□ □□□ □□□□□□□□□st'ɔ:rɪdʒ, 'stɔ:rʌdʒ□□□□storages (□□□) - 1000□□□

Back to Home: http://www.speargroupllc.com