one to one linear algebra

one to one linear algebra is a fundamental concept in the field of mathematics, particularly in linear algebra. This concept primarily deals with the properties of linear transformations and matrices and their implications in various applications ranging from computer science to data analysis. Understanding one to one linear transformations is crucial for grasping more complex mathematical theories, including eigenvalues and eigenvectors, as well as their roles in solving systems of equations. This article will explore the concept of one to one linear algebra, its mathematical definitions, the significance of one to one maps, and practical applications. Furthermore, we will delve into examples and theorems that illustrate these concepts, making it easier to comprehend their relevance in both theoretical and applied mathematics.

- Understanding One to One Linear Transformations
- The Mathematical Definition
- Properties of One to One Functions
- Applications of One to One Linear Algebra
- Examples and Theorems
- Conclusion

Understanding One to One Linear Transformations

In linear algebra, a transformation is said to be one to one (or injective) if it maps distinct elements to distinct elements. In simpler terms, if \(T: V \to W\) is a linear transformation, it is one to one if for every \(v_1, v_2 \in V\), \(T(v_1) = T(v_2)\) implies that \(v_1 = v_2\). This property is essential for ensuring that the mapping preserves the uniqueness of inputs, which is critical in various mathematical contexts.

A one to one linear transformation guarantees that each output from a given input is unique. This property is particularly significant when dealing with vector spaces, as it helps to understand the dimension and structure of these spaces. If a linear transformation is one to one, it means that the kernel of the transformation only contains the zero vector, emphasizing that no two different vectors in the domain are mapped to the same vector in the codomain.

The Mathematical Definition

The mathematical definition of a one to one linear transformation can be formalized in various ways. Consider a linear transformation \T : \mathbb{R}^n \to \mathbb{R}^n\). The transformation \T : is one to one if:

- The equation (T(x) = T(y)) implies (x = y) for all $(x, y \in \mathbb{R}^n)$.
- The null space of \(T\) contains only the zero vector, i.e., \(T(x) = 0\) only when \(x = 0\).
- The rank of the transformation equals the dimension of the domain space, meaning it has full rank.

This definition highlights the importance of the kernel and image of the transformation. The kernel indicates all the vectors that map to the zero vector, while the image represents all vectors that can be obtained by applying the transformation to vectors in the domain. For a transformation to be one to one, the kernel must be trivial.

Properties of One to One Functions

One to one linear transformations possess several key properties that are beneficial for their applications. Understanding these properties can help in identifying and working with one to one mappings in linear algebra.

Linear Independence

One significant property of one to one linear transformations is that the images of linearly independent sets of vectors are also linearly independent. This property is crucial when dealing with basis vectors, as it ensures that transformations maintain the independence of vectors.

Dimension Preservation

Another important aspect is that if $\T : V \to W$ is a one to one linear transformation, the dimension of the image of $\T : V \to W$ is a one to one linear transformation, the dimension of the domain. This means that the transformation does not lose any information regarding the dimensionality of the space, making it an essential consideration in higher-dimensional applications.

Inverse Transformations

If a linear transformation is one to one, it guarantees the existence of a left inverse. This means there exists a transformation $(T^{-1}: W \to V)$ such that $(T^{-1}: V) = V)$ for all $(v \in V)$. This property is vital for many applications, particularly in solving linear equations.

Applications of One to One Linear Algebra

One to one linear algebra concepts find applications across various fields. Here are some notable areas where they are particularly relevant:

- **Computer Graphics:** One to one transformations are used to manipulate shapes and images without distortion, allowing for accurate representation on screens.
- **Data Science:** In machine learning, one to one mappings help in dimensionality reduction techniques, such as PCA, ensuring that unique data points are preserved during transformation.
- **Cryptography:** One to one functions play a crucial role in encryption algorithms, ensuring that each piece of data maps uniquely to a ciphertext.
- **Control Theory:** One to one linear transformations are essential in system modeling and stability analysis, ensuring unique state representations.

Examples and Theorems

To better understand one to one linear algebra, it is beneficial to consider some examples and theorems that illustrate these concepts.

Example of a One to One Transformation

Consider the transformation $(T: \mathbb{R}^2 \to \mathbb{R}^2)$ defined by the matrix:

```
\[
A = \begin{pmatrix}
1 & 0 \\
0 & 2
\end{pmatrix}
```

This matrix represents a linear transformation that scales the (y)-coordinate by 2 while leaving the (x)-coordinate unchanged. To determine if (T) is one to one, we can check the kernel:

Setting (T(x, y) = (0, 0)), we find:

```
\[
\begin{pmatrix}
1 & 0 \\
0 & 2
\end{pmatrix} \begin{pmatrix}
x \\
y
\end{pmatrix} = \begin{pmatrix}
0 \\
0
\end{pmatrix}
\]
```

This results in (x = 0) and (y = 0), confirming that the only solution is the trivial solution. Thus, (T) is one to one.

Theorem: Rank-Nullity Theorem

The Rank-Nullity Theorem states that for any linear transformation \(T: V \to W\), the following relationship holds:

```
Rank(\(T\)) + Nullity(\(T\)) = Dimension(\(V\)).
```

This theorem is significant as it provides a direct method for determining whether a transformation is one to one by analyzing its nullity. If the nullity is zero, the transformation is guaranteed to be one to one.

Conclusion

One to one linear algebra plays a pivotal role in understanding linear transformations and their properties. By ensuring that distinct inputs yield distinct outputs, one to one mappings preserve the integrity of data and structures within mathematical frameworks. The implications of this concept extend into various fields, demonstrating its versatility and importance. As we have explored, understanding the definitions, properties, and applications of one to one linear transformations equips individuals with the necessary tools to analyze and solve complex mathematical problems effectively.

Q: What is a one to one linear transformation?

A: A one to one linear transformation is a linear mapping between two vector spaces where each distinct input in the domain corresponds to a unique output in the codomain, meaning no two different inputs map to the same output.

Q: How can you determine if a linear transformation is one to one?

A: To determine if a linear transformation is one to one, you can check if the kernel of the transformation only contains the zero vector. Alternatively, you can use the Rank-Nullity Theorem to assess the nullity of the transformation.

Q: What is the significance of one to one transformations in data science?

A: In data science, one to one transformations are crucial for ensuring unique representations of data during processes like dimensionality reduction, which helps maintain the integrity of information while simplifying datasets.

Q: Can a one to one transformation have a non-trivial kernel?

A: No, a one to one transformation cannot have a non-trivial kernel. The kernel must only contain the zero vector; otherwise, the transformation would map multiple distinct inputs to the same output, violating the one to one property.

Q: How does the concept of one to one relate to eigenvalues?

A: The concept of one to one transformations is related to eigenvalues in that if a linear transformation has distinct eigenvalues, it implies that the transformation is one to one, as each eigenvalue corresponds to a unique eigenvector.

Q: What are some practical applications of one to one linear algebra?

A: Practical applications of one to one linear algebra include computer graphics for image manipulation, cryptography for secure data transmission, and control theory for system modeling and analysis.

Q: What is the difference between one to one and onto transformations?

A: One to one transformations ensure that distinct inputs yield distinct outputs, while onto transformations guarantee that every element in the codomain is the image of at least one element from the domain. A transformation can be one to one but not onto, or vice versa.

Q: How does linear independence relate to one to one transformations?

A: Linear independence relates to one to one transformations in that the images of linearly independent vectors under a one to one transformation will also be linearly independent. This property is essential for preserving the structure of vector spaces.

Q: What is the significance of the Rank-Nullity Theorem in assessing one to one transformations?

A: The Rank-Nullity Theorem is significant because it provides a direct relationship between the rank and nullity of a linear transformation, allowing one to determine if the transformation is one to one by checking if the nullity is zero.

One To One Linear Algebra

Find other PDF articles:

http://www.speargroupllc.com/algebra-suggest-003/pdf?docid=VBc10-2597&title=algebra-sol.pdf

one to one linear algebra: Fourier Analysis and Approximation, 2011-09-21 Fourier Analysis and Approximation

one to one linear algebra: A Course in Modern Geometries Judith N. Cederberg, 2013-03-09 A Course in Modern Geometries is designed for a junior-senior level course for mathematics majors, including those who plan to teach in secondary school. Chapter 1 presents several finite geometries in an axiomatic framework. Chapter 2 introduces Euclid's geometry and the basic ideas of non-Euclidean geometry. The synthetic approach of Chapters 1 - 2 is followed by the analytic treatment of transformations of the Euclidean plane in Chapter 3. Chapter 4 presents plane projective geometry both synthetically and analytically. The extensive use of matrix representations of groups of transformations in Chapters 3 - 4 reinforces ideas from linear algebra and serves as excellent preparation for a course in abstract algebra. Each chapter includes a list of suggested sources for applications and/or related topics.

one to one linear algebra: Fourier Analysis and Approximation P.L. Butzer, Nessel, Trebels, 2012-12-06 At the international conference on 'Harmonic Analysis and Integral Transforms', conducted by one of the authors at the Mathematical Research Institute in Oberwolfach (Black Forest) in August 1965, it was felt that there was a real need for a book on Fourier analysis stressing

(i) parallel treatment of Fourier series and Fourier trans forms from a transform point of view, (ii) treatment of Fourier transforms in LP(lRn) space not only for p=1 and p=2, (iii) classical solution of partial differential equations with completely rigorous proofs, (iv) theory of singular integrals of convolution type, (v) applications to approximation theory including saturation theory, (vi) multiplier theory, (vii) Hilbert transforms, Riesz fractional integrals, Bessel potentials, (viii) Fourier transform methods on locally compact groups. This study aims to consider these aspects, presenting a systematic treatment of Fourier analysis on the circle as well as on the infinite line, and of those areas of approximation theory which are in some way or other related thereto. A second volume is in preparation which goes beyond the one-dimensional theory presented here to cover the subject for functions of several variables. Approximately a half of this first volume deals with the theories of Fourier series and of Fourier integrals from a transform point of view.

one to one linear algebra: College of Engineering University of Michigan. College of Engineering, 1970

one to one linear algebra: Finite Dimensional Algebras Yurj A. Drozd, Vladimir V. Kirichenko, 2012-12-06 This English edition has an additional chapter Elements of Homological Al gebra. Homological methods appear to be effective in many problems in the theory of algebras; we hope their inclusion makes this book more complete and self-contained as a textbook. We have also taken this occasion to correct several inaccuracies and errors in the original Russian edition. We should like to express our gratitude to V. Dlab who has not only metic ulously translated the text, but has also contributed by writing an Appendix devoted to a new important class of algebras, viz. guasi-hereditary algebras. Finally, we are indebted to the publishers, Springer-Verlag, for enabling this book to reach such a wide audience in the world of mathematical community. Kiev, February 1993 Yu.A. Drozd V.V. Kirichenko Preface The theory of finite dimensional algebras is one of the oldest branches of modern algebra. Its origin is linked to the work of Hamilton who discovered the famous algebra of quaternions, and Cayley who developed matrix theory. Later finite dimensional algebras were studied by a large number of mathematicians including B. Peirce, C.S. Peirce, Clifford, 'Weierstrass, Dedekind, Jordan and Frobenius. At the end of the last century T. Molien and E. Cartan described the semisimple algebras over the complex and real fields and paved the first steps towards the study of non-semi simple algebras.

one to one linear algebra: A Course in Modern Geometries Judith Cederberg, 2004-09-23 Designed for a junior-senior level course for mathematics majors, including those who plan to teach in secondary school. The first chapter presents several finite geometries in an axiomatic framework, while Chapter 2 continues the synthetic approach in introducing both Euclids and ideas of non-Euclidean geometry. There follows a new introduction to symmetry and hands-on explorations of isometries that precedes an extensive analytic treatment of similarities and affinities. Chapter 4 presents plane projective geometry both synthetically and analytically, and the new Chapter 5 uses a descriptive and exploratory approach to introduce chaos theory and fractal geometry, stressing the self-similarity of fractals and their generation by transformations from Chapter 3. Throughout, each chapter includes a list of suggested resources for applications or related topics in areas such as art and history, plus this second edition points to Web locations of author-developed guides for dynamic software explorations of the Poincaré model, isometries, projectivities, conics and fractals. Parallel versions are available for Cabri Geometry and Geometers Sketchpad.

one to one linear algebra: DUNE — The Distributed and Unified Numerics Environment Oliver Sander, 2020-12-07 The Distributed and Unified Numerics Environment (Dune) is a set of open-source C++ libraries for the implementation of finite element and finite volume methods. Over the last 15 years it has become one of the most commonly used libraries for the implementation of new, efficient simulation methods in science and engineering. Describing the main Dune libraries in detail, this book covers access to core features like grids, shape functions, and linear algebra, but also higher-level topics like function space bases and assemblers. It includes extensive information on programmer interfaces, together with a wealth of completed examples that illustrate how these interfaces are used in practice. After having read the book, readers will be prepared to write their

own advanced finite element simulators, tapping the power of Dune to do so.

one to one linear algebra: University of Michigan Official Publication University of Michigan, 1972 Each number is the catalogue of a specific school or college of the University.

one to one linear algebra: Elementary Linear Algebra Stephen Andrilli, David Hecker, 2016-02-25 Elementary Linear Algebra, 5th edition, by Stephen Andrilli and David Hecker, is a textbook for a beginning course in linear algebra for sophomore or junior mathematics majors. This text provides a solid introduction to both the computational and theoretical aspects of linear algebra. The textbook covers many important real-world applications of linear algebra, including graph theory, circuit theory, Markov chains, elementary coding theory, least-squares polynomials and least-squares solutions for inconsistent systems, differential equations, computer graphics and quadratic forms. Also, many computational techniques in linear algebra are presented, including iterative methods for solving linear systems, LDU Decomposition, the Power Method for finding eigenvalues, QR Decomposition, and Singular Value Decomposition and its usefulness in digital imaging. The most unique feature of the text is that students are nurtured in the art of creating mathematical proofs using linear algebra as the underlying context. The text contains a large number of worked out examples, as well as more than 970 exercises (with over 2600 total questions) to give students practice in both the computational aspects of the course and in developing their proof-writing abilities. Every section of the text ends with a series of true/false questions carefully designed to test the students' understanding of the material. In addition, each of the first seven chapters concludes with a thorough set of review exercises and additional true/false questions. Supplements to the text include an Instructor's Manual with answers to all of the exercises in the text, and a Student Solutions Manual with detailed answers to the starred exercises in the text. Finally, there are seven additional web sections available on the book's website to instructors who adopt the text. - Builds a foundation for math majors in reading and writing elementary mathematical proofs as part of their intellectual/professional development to assist in later math courses - Presents each chapter as a self-contained and thoroughly explained modular unit. -Provides clearly written and concisely explained ancillary materials, including four appendices expanding on the core concepts of elementary linear algebra - Prepares students for future math courses by focusing on the conceptual and practical basics of proofs

one to one linear algebra: Theory of Multivariate Statistics Martin Bilodeau, David Brenner, 2008-01-20 Our object in writing this book is to present the main results of the modern theory of multivariate statistics to an audience of advanced students who would appreciate a concise and mathematically rigorous treatment of that material. It is intended for use as a textbook by students taking a first graduate course in the subject, as well as for the general reference of interested research workers who will find, in a readable form, developments from recently published work on certain broad topics not otherwise easily accessible, as for instance robust inference (using adjusted likelihood ratio tests) and the use of the bootstrap in a multivariate setting. A minimum background expected of the reader would include at least two courses in mathematical statistics, and certainly some exposure to the calculus of several variables together with the descriptive geometry of linear algebra.

one to one linear algebra: First Steps in Differential Geometry Andrew McInerney, 2013-07-09 Differential geometry arguably offers the smoothest transition from the standard university mathematics sequence of the first four semesters in calculus, linear algebra, and differential equations to the higher levels of abstraction and proof encountered at the upper division by mathematics majors. Today it is possible to describe differential geometry as the study of structures on the tangent space, and this text develops this point of view. This book, unlike other introductory texts in differential geometry, develops the architecture necessary to introduce symplectic and contact geometry alongside its Riemannian cousin. The main goal of this book is to bring the undergraduate student who already has a solid foundation in the standard mathematics curriculum into contact with the beauty of higher mathematics. In particular, the presentation here emphasizes the consequences of a definition and the careful use of examples and constructions in order to

explore those consequences.

one to one linear algebra: Linear Transformation Nita H. Shah, Urmila B. Chaudhari, 2020-12-29 This book introduces linear transformation and its key results, which have applications in engineering, physics, and various branches of mathematics. Linear transformation is a difficult subject for students. This concise text provides an in-depth overview of linear trans-formation. It provides multiple-choice questions, covers enough examples for the reader to gain a clear understanding, and includes exact methods with specific shortcuts to reach solutions for particular problems. Research scholars and students working in the fields of engineering, physics, and different branches of mathematics need to learn the concepts of linear transformation to solve their problems. This book will serve their need instead of having to use the more complex texts that contain more concepts then needed. The chapters mainly discuss the definition of linear transformation, properties of linear transformation, linear operators, composition of two or more linear transformations, kernels and range of linear transformation, inverse transformation, one-to-one and onto transformation, isomorphism, matrix linear transformation, and similarity of two matrices.

one to one linear algebra: Introduction to Linear Algebra with Applications Jim DeFranza, Daniel Gagliardi, 2015-01-23 Over the last few decades, linear algebra has become more relevant than ever. Applications have increased not only in quantity but also in diversity, with linear systems being used to solve problems in chemistry, engineering, economics, nutrition, urban planning, and more. DeFranza and Gagliardi introduce students to the topic in a clear, engaging, and easy-to-follow manner. Topics are developed fully before moving on to the next through a series of natural connections. The result is a solid introduction to linear algebra for undergraduates' first course.

one to one linear algebra: Functions of One Complex Variable II John B. Conway, 2012-12-06 This is the sequel to my book Functions of One Complex Variable I, and probably a good opportunity to express my appreciation to the mathemat ical community for its reception of that work. In retrospect, writing that book was a crazy venture. As a graduate student I had had one of the worst learning experiences of my career when I took complex analysis; a truly bad teacher. As a non-tenured assistant professor, the department allowed me to teach the graduate course in complex analysis. They thought I knew the material; I wanted to learn it. I adopted a standard text and shortly after beginning to prepare my lectures I became dissatisfied. All the books in print had virtues; but I was educated as a modern analyst, not a classical one, and they failed to satisfy me. This set a pattern for me in learning new mathematics after I had become a mathematician. Some topics I found satisfactorily treated in some sources; some I read in many books and then recast in my own style. There is also the matter of philosophy and point of view. Going from a certain mathematical vantage point to another is thought by many as being independent of the path; certainly true if your only objective is getting there. But getting there is often half the fun and often there is twice the value in the journey if the path is properly chosen.

one to one linear algebra: *Differential Equations with Linear Algebra* Matthew R. Boelkins, Jack L. Goldberg, Merle C. Potter, 2009-11-05 Differential Equations with Linear Algebra explores the interplay between linear algebra and differential equations by examining fundamental problems in elementary differential equations. With an example-first style, the text is accessible to students who have completed multivariable calculus and is appropriate for courses in mathematics and engineering that study systems of differential equations.

one to one linear algebra: Operator Theory, Function Spaces, and Applications Tanja Eisner, Birgit Jacob, André Ran, Hans Zwart, 2016-09-24 This volume collects a selected number of papers presented at the International Workshop on Operator Theory and its Applications (IWOTA) held in July 2014 at Vrije Universiteit in Amsterdam. Main developments in the broad area of operator theory are covered, with special emphasis on applications to science and engineering. The volume also presents papers dedicated to the eightieth birthday of Damir Arov and to the sixty-fifth birthday of Leiba Rodman, both leading figures in the area of operator theory and its applications, in

particular, to systems theory.

one to one linear algebra: <u>Introduction to Mechanics</u> Mr. Rohit Manglik, 2024-07-27 EduGorilla Publication is a trusted name in the education sector, committed to empowering learners with high-quality study materials and resources. Specializing in competitive exams and academic support, EduGorilla provides comprehensive and well-structured content tailored to meet the needs of students across various streams and levels.

one to one linear algebra: General Register University of Michigan, 1926 Announcements for the following year included in some vols.

one to one linear algebra: Computational Statistics James E. Gentle, 2009-07-28 Computational inference has taken its place alongside asymptotic inference and exact techniques in the standard collection of statistical methods. Computational inference is based on an approach to statistical methods that uses modern computational power to simulate distributional properties of estimators and test statistics. This book describes computationally-intensive statistical methods in a unified presentation, emphasizing techniques, such as the PDF decomposition, that arise in a wide range of methods. The book assumes an intermediate background in mathematics, computing, and applied and theoretical statistics. The first part of the book, consisting of a single long chapter, reviews this background material while introducing computationally-intensive exploratory data analysis and computational inference. The six chapters in the second part of the book are on statistical computing. This part describes arithmetic in digital computers and how the nature of digital computations affects algorithms used in statistical methods. Building on the first chapters on numerical computations and algorithm design, the following chapters cover the main areas of statistical numerical analysis, that is, approximation of functions, numerical quadrature, numerical linear algebra, solution of nonlinear equations, optimization, and random number generation. The third and fourth parts of the book cover methods of computational statistics, including Monte Carlo methods, randomization and cross validation, the bootstrap, probability density estimation, and statistical learning. The book includes a large number of exercises with some solutions provided in an appendix.

one to one linear algebra: Computational Statistics, 2010-04-29 Computational inference is based on an approach to statistical methods that uses modern computational power to simulate distributional properties of estimators and test statistics. This book describes computationally intensive statistical methods in a unified presentation, emphasizing techniques, such as the PDF decomposition, that arise in a wide range of methods.

Related to one to one linear algebra

OnePay | More. For your money. | Formerly One OnePay combines mobile banking, debit rewards, a digital wallet and more in one app. Banking services provided by bank partners, Members FDIC

Cargo Tracking - ONE Type some keywords in the search bar and select the filters you need to get started

What's your phone number? Save, spend, and grow your money — all in one place **Personal Cloud Storage - Microsoft OneDrive** Save your files and photos to OneDrive and access them from any device, anywhere. Learn more and get 5 GB of free personal cloud storage today **Microsoft OneDrive** Microsoft OneDrive

Home | ONE United States HomeApparel's Great Migration: Navigating Beyond Costs with ONE's Strategic Insights The map of global apparel production is being redrawn. For decades, East Asia was the undisputed

Ocean Network Express | ONE Ocean Network Express was established on July 7, 2017 by the integration of 'K' Line, MOL and NYK

OnePay | More. For your money. | Formerly One OnePay combines mobile banking, debit rewards, a digital wallet and more in one app. Banking services provided by bank partners, Members FDIC

Cargo Tracking - ONE Type some keywords in the search bar and select the filters you need to get started

What's your phone number? Save, spend, and grow your money — all in one place

Personal Cloud Storage - Microsoft OneDrive Save your files and photos to OneDrive and access them from any device, anywhere. Learn more and get 5 GB of free personal cloud storage today **Microsoft OneDrive** Microsoft OneDrive

Home | ONE United States HomeApparel's Great Migration: Navigating Beyond Costs with ONE's Strategic Insights The map of global apparel production is being redrawn. For decades, East Asia was the undisputed

Ocean Network Express | ONE Ocean Network Express was established on July 7, 2017 by the integration of 'K' Line, MOL and NYK

OnePay | More. For your money. | Formerly One OnePay combines mobile banking, debit rewards, a digital wallet and more in one app. Banking services provided by bank partners, Members FDIC

Cargo Tracking - ONE Type some keywords in the search bar and select the filters you need to get started

What's your phone number? Save, spend, and grow your money — all in one place

Personal Cloud Storage - Microsoft OneDrive Save your files and photos to OneDrive and access them from any device, anywhere. Learn more and get 5 GB of free personal cloud storage today **Microsoft OneDrive** Microsoft OneDrive

Home | ONE United States HomeApparel's Great Migration: Navigating Beyond Costs with ONE's Strategic Insights The map of global apparel production is being redrawn. For decades, East Asia was the undisputed

Ocean Network Express | ONE Ocean Network Express was established on July 7, 2017 by the integration of 'K' Line, MOL and NYK

OnePay | More. For your money. | Formerly One OnePay combines mobile banking, debit rewards, a digital wallet and more in one app. Banking services provided by bank partners, Members FDIC

Cargo Tracking - ONE Type some keywords in the search bar and select the filters you need to get started

What's your phone number? Save, spend, and grow your money — all in one place **Personal Cloud Storage - Microsoft OneDrive** Save your files and photos to OneDrive and access them from any device, anywhere. Learn more and get 5 GB of free personal cloud storage today **Microsoft OneDrive** Microsoft OneDrive

Home | ONE United States HomeApparel's Great Migration: Navigating Beyond Costs with ONE's Strategic Insights The map of global apparel production is being redrawn. For decades, East Asia was the undisputed

Ocean Network Express | ONE Ocean Network Express was established on July 7, 2017 by the integration of 'K' Line, MOL and NYK

Back to Home: http://www.speargroupllc.com