# linear algebra by serge lang

linear algebra by serge lang is a seminal text that has shaped the understanding of linear algebra for countless students and professionals alike. Renowned for its clarity and rigor, this book delves deep into the fundamental concepts and applications of linear algebra, making it an essential resource for anyone looking to master this subject. In this article, we will explore the key features of "Linear Algebra" by Serge Lang, including its pedagogical approach, core topics covered, and its impact on the field of mathematics. Additionally, we will discuss its applications in various domains, making it clear why this book remains a cornerstone in mathematical literature.

Below, you will find a comprehensive Table of Contents that outlines the topics we will cover.

- Overview of Linear Algebra by Serge Lang
- Key Features of the Book
- Core Topics Covered
- Applications of Linear Algebra
- The Impact of Serge Lang's Work
- Conclusion

# Overview of Linear Algebra by Serge Lang

Serge Lang's "Linear Algebra" provides a thorough introduction to the fundamental concepts and techniques used in linear algebra. This book is structured to facilitate understanding, gradually building from basic concepts to more complex ideas. Lang emphasizes both the theoretical and practical aspects of linear algebra, making it suitable for undergraduate and graduate students alike. The clarity of explanation, coupled with a wealth of examples, allows readers to approach linear algebra with confidence.

Lang's approach is distinctive as it encourages readers to engage with the material actively. He provides problems of varying difficulty levels, which not only reinforce the concepts taught but also challenge the reader's understanding. This focus on problem-solving is integral to mastering linear algebra, making Lang's text a standout choice among similar resources.

# Key Features of the Book

One of the most notable features of "Linear Algebra" by Serge Lang is its comprehensive treatment of the subject, which includes a variety of mathematical tools and concepts necessary for a deep understanding of linear algebra. The book is organized logically, with each chapter building upon the previous one, ensuring that readers can follow the progression of ideas seamlessly.

#### Clear Explanations and Definitions

Lang excels in providing clear definitions and explanations for key concepts. His writing style is precise and avoids unnecessary jargon, making complex ideas accessible to readers without compromising depth. This clarity is vital for students who may be encountering these concepts for the first time.

#### Problem Sets and Exercises

At the end of each chapter, Lang includes a series of exercises, ranging from straightforward applications of the concepts to more challenging problems that require deeper thought and insight. This variety ensures that students can practice and apply what they have learned effectively. Additionally, the inclusion of solutions to selected problems aids in self-assessment.

## Theoretical and Practical Applications

Lang's text balances theory with practical applications, illustrating how linear algebra is used in various fields such as engineering, computer science, and economics. This relevance to real-world applications enhances the learning experience and demonstrates the importance of linear algebra in solving practical problems.

# Core Topics Covered

Serge Lang's "Linear Algebra" encompasses a wide range of topics that are foundational to the field. Below are some of the core subjects addressed in the book:

• Vectors and Vector Spaces

- Linear Transformations
- Matrix Operations
- Determinants
- Eigenvalues and Eigenvectors
- Inner Product Spaces

## Vectors and Vector Spaces

The book begins with an introduction to vectors and vector spaces, establishing the fundamental building blocks of linear algebra. Lang discusses the properties of vector spaces, including subspaces, bases, and dimensions, providing readers with a solid foundation to build upon.

#### **Linear Transformations**

Lang covers linear transformations in depth, explaining how they relate to matrices and their representation. This section is crucial as it bridges the gap between abstract concepts and their computational applications.

## **Matrix Operations**

Matrix operations, including addition, multiplication, and inversion, are thoroughly explored. Lang emphasizes the importance of understanding these operations, as they are central to many applications of linear algebra.

#### **Determinants**

Determinants are another critical topic in Lang's text. He provides clear definitions and methods for calculating determinants, along with their geometric interpretations and significance in solving linear equations.

## Eigenvalues and Eigenvectors

The concepts of eigenvalues and eigenvectors are fundamental to various applications in science and engineering. Lang explains these concepts with clarity, including their computation and significance in understanding linear transformations.

# Applications of Linear Algebra

Linear algebra has numerous applications across different fields, and Lang's text highlights these connections effectively. Some of the notable applications include:

- Computer Graphics
- Data Analysis and Machine Learning
- Engineering and Physics
- Economics and Game Theory
- Network Theory

# Computer Graphics

In computer graphics, linear algebra is used to perform transformations and manipulate images.

Understanding matrices allows for the efficient rendering of graphics in video games and simulations.

#### Data Analysis and Machine Learning

In data analysis and machine learning, linear algebra facilitates the handling of large datasets. Techniques such as Principal Component Analysis (PCA) rely heavily on concepts from linear algebra to reduce dimensionality and identify patterns.

### Engineering and Physics

Engineers and physicists utilize linear algebra to model systems and solve equations that describe physical phenomena. The ability to manipulate vectors and matrices is essential in these fields.

# Economics and Game Theory

Economists use linear algebra to model economic systems and optimize resource allocation. Game theory, which often involves strategic interactions, also employs linear algebraic methods.

### Network Theory

In network theory, linear algebra is used to analyze relationships and flows within networks, making it a critical tool in fields such as telecommunications and social network analysis.

# The Impact of Serge Lang's Work

Serge Lang's contributions to the field of mathematics extend beyond this textbook. His work has influenced the way linear algebra is taught and understood globally. By emphasizing clarity and rigor, Lang has set a standard for mathematical writing that is both accessible and profound.

The impact of his book is evident in the curriculum of many mathematics departments worldwide, where "Linear Algebra" is often a recommended or required text. Lang's approach encourages critical thinking and problem-solving, skills that are invaluable in both academic and professional settings.

## Conclusion

In summary, "Linear Algebra" by Serge Lang is a comprehensive and authoritative resource that has significantly influenced the study of linear algebra. Its clear explanations, structured approach, and practical applications make it an indispensable tool for students and professionals alike. By bridging theoretical concepts with real-world applications, Lang has ensured that readers not only learn linear algebra but also appreciate its relevance and utility.

# Q: What is the main focus of linear algebra by Serge Lang?

A: The main focus of "Linear Algebra" by Serge Lang is to provide a thorough introduction to the concepts and techniques of linear algebra, emphasizing both theoretical understanding and practical applications.

#### Q: Who is the intended audience for this book?

A: The intended audience for this book includes undergraduate and graduate students studying mathematics, engineering, computer science, and other fields that require a strong foundation in linear algebra.

# Q: How does Serge Lang approach teaching linear algebra?

A: Serge Lang approaches teaching linear algebra with clarity and rigor, providing clear definitions, numerous examples, and a variety of exercises that challenge students and reinforce learning.

#### Q: What are some applications of linear algebra discussed in the book?

A: Some applications of linear algebra discussed in the book include computer graphics, data analysis and machine learning, engineering and physics, economics and game theory, and network theory.

# Q: Why is "Linear Algebra" by Serge Lang considered a classic text?

A: "Linear Algebra" by Serge Lang is considered a classic text because of its comprehensive coverage, clarity of explanation, and its significant influence on the teaching and understanding of linear algebra in academic settings worldwide.

#### Q: Does the book include exercises for practice?

A: Yes, the book includes a variety of exercises at the end of each chapter, allowing students to practice and apply the concepts they have learned, ranging from basic to challenging problems.

# Q: What makes this book suitable for self-study?

A: This book is suitable for self-study due to its logical structure, clear explanations, and the inclusion of solutions for selected problems, which help readers assess their understanding of the material.

## Q: How does Lang's text compare to other linear algebra textbooks?

A: Lang's text is distinguished by its rigorous treatment of concepts, clarity, and a strong emphasis on problem-solving compared to other textbooks that may focus more on computational techniques without a strong theoretical foundation.

# **Linear Algebra By Serge Lang**

Find other PDF articles:

 $\underline{http://www.speargroupllc.com/anatomy-suggest-005/Book?ID=DTn11-5439\&title=door-latch-anatomy-suggest-005/Book?ID=DTn11-5439\&title=door-latch-anatomy-suggest-005/Book?ID=DTn11-5439\&title=door-latch-anatomy-suggest-005/Book?ID=DTn11-5439\&title=door-latch-anatomy-suggest-005/Book?ID=DTn11-5439\&title=door-latch-anatomy-suggest-005/Book?ID=DTn11-5439\&title=door-latch-anatomy-suggest-005/Book?ID=DTn11-5439\&title=door-latch-anatomy-suggest-005/Book?ID=DTn11-5439\&title=door-latch-anatomy-suggest-005/Book?ID=DTn11-5439\&title=door-latch-anatomy-suggest-005/Book?ID=DTn11-5439\&title=door-latch-anatomy-suggest-005/Book?ID=DTn11-5439\&title=door-latch-anatomy-suggest-005/Book?ID=DTn11-5439\&title=door-latch-anatomy-suggest-005/Book?ID=DTn11-5439\&title=door-latch-anatomy-suggest-005/Book?ID=DTn11-5439\&title=door-latch-anatomy-suggest-005/Book?ID=DTn11-5439\&title=door-latch-anatomy-suggest-005/Book?ID=DTn11-5439\&title=door-latch-anatomy-suggest-005/Book?ID=DTn11-5439\&title=door-latch-anatomy-suggest-005/Book?ID=DTn11-5439\&title=door-latch-anatomy-suggest-005/Book?ID=DTn11-5439\&title=door-latch-anatomy-suggest-005/Book?ID=DTn11-5439\&title=door-latch-anatomy-suggest-005/Book?ID=DTn11-5439\&title=door-latch-anatomy-suggest-005/Book?ID=DTn11-5439\&title=door-latch-anatomy-suggest-005/Book.$ 

linear algebra by serge lang: Introduction to Linear Algebra Serge Lang, 2012-12-06 This is a short text in linear algebra, intended for a one-term course. In the first chapter, Lang discusses the relation between the geometry and the algebra underlying the subject, and gives concrete examples of the notions which appear later in the book. He then starts with a discussion of linear equations, matrices and Gaussian elimination, and proceeds to discuss vector spaces, linear maps, scalar products, determinants, and eigenvalues. The book contains a large number of exercises, some of the routine computational type, while others are conceptual.

**linear algebra by serge lang:** Linear Algebra Serge Lang, 2013-06-29 Linear Algebra is intended for a one-term course at the junior or senior level. It begins with an exposition of the basic theory of vector spaces and proceeds to explain the fundamental structure theorems for linear maps, including eigenvectors and eigenvalues, quadric and hermitian forms, diagonalization of symmetric, hermitian, and unitary linear maps and matrices, triangulation, and Jordan canonical form. The book also includes a useful chapter on convex sets and the finite-dimensional Krein-Milman theorem. The presentation is aimed at the student who has already had some exposure to the elementary theory of matrices, determinants, and linear maps. However, the book is logically self-contained. In this new edition, many parts of the book have been rewritten and reorganized, and new exercises have been added.

linear algebra by serge lang: Solutions Manual for Lang's Linear Algebra Rami Shakarchi, 2012-12-06 The present volume contains all the exercises and their solutions of Lang's' Linear Algebra. Solving problems being an essential part of the learning process, my goal is to provide those learning and teaching linear algebra with a large number of worked out exercises. Lang's textbook covers all the topics in linear algebra that are usually taught at the undergraduate level: vector spaces, matrices and linear maps including eigenvectors and eigenvalues, determinants, diagonalization of symmetric and hermitian maps, unitary maps and matrices, triangulation, Jordan canonical form, and convex sets. Therefore this solutions manual can be helpful to anyone learning or teaching linear algebra at the college level. As the understanding of the first chapters is essential to the comprehension of the later, more involved chapters, I encourage the reader to work through all of the problems of Chapters I, II, III and IV. Often earlier exercises are useful in solving later problems. (For example, Exercise 35, §3 of Chapter II shows that a strictly upper triangular matrix is nilpotent and this result is then used in Exercise 7, §1 of Chapter X.) To make the solutions concise, I have included only the necessary arguments; the reader may have to fill in the details to get complete proofs. Finally, I thank Serge Lang for giving me the opportunity to work on this solutions manual, and I also thank my brother Karim and Steve Miller for their helpful

comments and their support.

linear algebra by serge lang: Linear Algebra. Lang Serge Lang, 1966

linear algebra by serge lang: Elements Of Linear And Multilinear Algebra John M Erdman, 2020-12-22 This set of notes is an activity-oriented introduction to linear and multilinear algebra. The great majority of the most elementary results in these subjects are straightforward and can be verified by the thoughtful student. Indeed, that is the main point of these notes — to convince the beginner that the subject is accessible. In the material that follows there are numerous indicators that suggest activity on the part of the reader: words such as 'proposition', 'example', 'theorem', 'exercise', and 'corollary', if not followed by a proof (and proofs here are very rare) or a reference to a proof, are invitations to verify the assertions made. These notes are intended to accompany an (academic) year-long course at the advanced undergraduate or beginning graduate level. (With judicious pruning most of the material can be covered in a two-term sequence.) The text is also suitable for a lecture-style class, the instructor proving some of the results while leaving others as exercises for the students. This book has tried to keep the facts about vector spaces and those about inner product spaces separate. Many beginning linear algebra texts conflate the material on these two vastly different subjects.

**linear algebra by serge lang:** *Undergraduate Algebra* Serge Lang, 2001-09-27 The companion title, Linear Algebra, has sold over 8,000 copies The writing style is very accessible The material can be covered easily in a one-year or one-term course Includes Noah Snyder's proof of the Mason-Stothers polynomial abc theorem New material included on product structure for matrices including descriptions of the conjugation representation of the diagonal group

linear algebra by serge lang: Algebraic Number Theory Serge Lang, 2013-06-29 The present book gives an exposition of the classical basic algebraic and analytic number theory and supersedes my Algebraic Numbers, including much more material, e. g. the class field theory on which 1 make further comments at the appropriate place later. For different points of view, the reader is encouraged to read the collection of papers from the Brighton Symposium (edited by Cassels-Frohlich), the Artin-Tate notes on class field theory, Weil's book on Basic Number Theory, Borevich-Shafarevich's Number Theory, and also older books like those of W eber, Hasse, Hecke, and Hilbert's Zahlbericht. It seems that over the years, everything that has been done has proved useful, theo retically or as examples, for the further development of the theory. Old, and seemingly isolated special cases have continuously acquired renewed significance, often after half a century or more. The point of view taken here is principally global, and we deal with local fields only incidentally. For a more complete treatment of these, cf. Serre's book Corps Locaux. There is much to be said for a direct global approach to number fields. Stylistically, 1 have intermingled the ideal and idelic approaches without prejudice for either. 1 also include two proofs of the functional equation for the zeta function, to acquaint the reader with different techniques (in some sense equivalent, but in another sense, suggestive of very different moods).

linear algebra by serge lang: Fundamentals of Differential Geometry Serge Lang, 2012-12-06. The present book aims to give a fairly comprehensive account of the fundamentals of differential manifolds and differential geometry. The size of the book influenced where to stop, and there would be enough material for a second volume (this is not a threat). At the most basic level, the book gives an introduction to the basic concepts which are used in differential topology, differential geometry, and differential equations. In differential topology, one studies for instance homotopy classes of maps and the possibility of finding suitable differentiable maps in them (immersions, embeddings, isomorphisms, etc.). One may also use differentiable structures on topological manifolds to deter mine the topological structure of the manifold (for example, it la Smale [Sm 67]). In differential geometry, one puts an additional structure on the differentiable manifold (a vector field, a spray, a 2-form, a Riemannian metric, ad lib.) and studies properties connected especially with these objects. Formally, one may say that one studies properties invariant under the group of differentiable automorphisms which preserve the additional structure. In differential equations, one studies vector fields and their in tegral curves, singular points, stable and unstable manifolds, etc. A certain

number of concepts are essential for all three, and are so basic and elementary that it is worthwhile to collect them together so that more advanced expositions can be given without having to start from the very beginnings.

**linear algebra by serge lang:** Introduction to Linear Algebra. Second Edition Serge Lang, 1986

**linear algebra by serge lang:** Fundamental Structures of Algebra and Discrete Mathematics Stephan Foldes, 2011-02-14 Introduces and clarifies the basic theories of 12 structural concepts, offering a fundamental theory of groups, rings and other algebraic structures. Identifies essentials and describes interrelationships between particular theories. Selected classical theorems and results relevant to current research are proved rigorously within the theory of each structure. Throughout the text the reader is frequently prompted to perform integrated exercises of verification and to explore examples.

linear algebra by serge lang: Short Calculus Serge Lang, 2012-12-06 Praise for the first edition: ..Lang's present book is a source of interesting ideas and brilliant techniques. Acta Scientiarum Mathematicarum ..It is an admirable straightforward introduction to calculus. Mathematika This is a reprint of A First Course in Calculus, which has gone through five editions since the early sixties. It covers all the topics traditionally taught in the first-year calculus sequence in a brief and elementary fashion. As sociological and educational conditions have evolved in various ways over the past four decades, it has been found worthwhile to make the original edition available again. The audience consists of those taking the first calculus course, in high school or college. The approach is the one which was successful decades ago, involving clarity, and adjusted to a time when the students' background was not as substantial as it might be. We are now back to those times, so its time to start over again. There are no epsilons-delta, but this does not imply that the book is not rigorous. Lang learned this attitude from Emil Artin, around 1950.

**linear algebra by serge lang:** Introduction to Algebraic and Abelian Functions Serge Lang, 2012-12-06 Introduction to Algebraic and Abelian Functions is a self-contained presentation of a fundamental subject in algebraic geometry and number theory. For this revised edition, the material on theta functions has been expanded, and the example of the Fermat curves is carried throughout the text. This volume is geared toward a second-year graduate course, but it leads naturally to the study of more advanced books listed in the bibliography.

**Sciences** Colm T. Whelan, 2022-05-31 There is only a very limited number of physical systems that can be exactly described in terms of simple analytic functions. There are, however, a vast range of problems which are amenable to a computational approach. This book provides a concise, self-contained introduction to the basic numerical and analytic techniques, which form the foundations of the algorithms commonly employed to give a quantitative description of systems of genuine physical interest. The methods developed are applied to representative problems from classical and quantum physics.

linear algebra by serge lang: Monoidal Category Theory Noson S. Yanofsky, 2024-11-05 A comprehensive, cutting-edge, and highly readable textbook that makes category theory and monoidal category theory accessible to students across the sciences. Category theory is a powerful framework that began in mathematics but has since expanded to encompass several areas of computing and science, with broad applications in many fields. In this comprehensive text, Noson Yanofsky makes category theory accessible to those without a background in advanced mathematics. Monoidal Category Theorydemonstrates the expansive uses of categories, and in particular monoidal categories, throughout the sciences. The textbook starts from the basics of category theory and progresses to cutting edge research. Each idea is defined in simple terms and then brought alive by many real-world examples before progressing to theorems and uncomplicated proofs. Richly guided exercises ground readers in concrete computation and application. The result is a highly readable and engaging textbook that will open the world of category theory to many. Makes category theory accessible to non-math majors Uses easy-to-understand language and emphasizes diagrams over

equations Incremental, iterative approach eases students into advanced concepts A series of embedded mini-courses cover such popular topics as quantum computing, categorical logic, self-referential paradoxes, databases and scheduling, and knot theory Extensive exercises and examples demonstrate the broad range of applications of categorical structures Modular structure allows instructors to fit text to the needs of different courses Instructor resources include slides

linear algebra by serge lang: Mathematics for Natural Scientists II Lev Kantorovich, 2024-03-23 This textbook, the second in a series (the first covered fundamentals and basics), seeks to make its material accessible to physics students. Physics/engineering can be greatly enhanced by knowledge of advanced mathematical techniques, but the math-specific jargon and laborious proofs can be off-putting to students not well versed in abstract math. This book uses examples and proofs designed to be clear and convincing from the context of physics, as well as providing a large number of both solved and unsolved problems in each chapter. This is the second edition, and it has been significantly revised and enlarged, with Chapters 1 (on linear algebra) and 2 (on the calculus of complex numbers and functions) having been particularly expanded. The enhanced topics throughout the book include: vector spaces, general (non-Hermitian, including normal and defective) matrices and their right/left eigenvectors/values, Jordan form, pseudoinverse, linear systems of differential equations, Gaussian elimination, fundamental theorem of algebra, convergence of a Fourie series and Gibbs-Wilbraham phenomenon, careful derivation of the Fourier integral and of the inverse Laplace transform. New material has been added on many physics topics meant to illustrate the maths, such as 3D rotation, properties of the free electron gas, van Hove singularities, and methods for both solving PDEs with a Fourier transform and calculating the width of a domain wall in a ferromagnet, to mention just a few. This textbook should prove invaluable to all of those with an interest in physics/engineering who have previously experienced difficulty processing the math involved.

**linear algebra by serge lang:** *Math Talks for Undergraduates* Serge Lang, 2012-12-06 For many years Serge Lang has given talks to undergraduates on selected items in mathematics which could be extracted at a level understandable by students who have had calculus. Written in a conversational tone, Lang now presents a collection of those talks as a book. The talks could be given by faculty, but even better, they may be given by students in seminars run by the students themselves. Undergraduates, and even some high school students, will enjoy the talks which cover prime numbers, the abc conjecture, approximation theorems of analysis, Bruhat-Tits spaces, harmonic and symmetric polynomials, and more in a lively and informal style.

linear algebra by serge lang: Differential and Riemannian Manifolds Serge Lang, 2012-12-06 This is the third version of a book on differential manifolds. The first version appeared in 1962, and was written at the very beginning of a period of great expansion of the subject. At the time, I found no satisfactory book for the foundations of the subject, for multiple reasons. I expanded the book in 1971, and I expand it still further today. Specifically, I have added three chapters on Riemannian and pseudo Riemannian geometry, that is, covariant derivatives, curvature, and some applications up to the Hopf-Rinow and Hadamard-Cartan theorems, as well as some calculus of variations and applications to volume forms. I have rewritten the sections on sprays, and I have given more examples of the use of Stokes' theorem. I have also given many more references to the literature, all of this to broaden the perspective of the book, which I hope can be used among things for a general course leading into many directions. The present book still meets the old needs, but fulfills new ones. At the most basic level, the book gives an introduction to the basic concepts which are used in differential topology, differential geometry, and differential equations. In differential topology, one studies for instance homotopy classes of maps and the possibility of finding suitable differentiable maps in them (immersions, embeddings, isomorphisms, etc.).

**linear algebra by serge lang: Introduction to Arakelov Theory** Serge Lang, 2012-12-06 Arakelov introduced a component at infinity in arithmetic considerations, thus giving rise to global theorems similar to those of the theory of surfaces, but in an arithmetic context over the ring of integers of a number field. The book gives an introduction to this theory, including the analogues of

the Hodge Index Theorem, the Arakelov adjunction formula, and the Faltings Riemann-Roch theorem. The book is intended for second year graduate students and researchers in the field who want a systematic introduction to the subject. The residue theorem, which forms the basis for the adjunction formula, is proved by a direct method due to Kunz and Waldi. The Faltings Riemann-Roch theorem is proved without assumptions of semistability. An effort has been made to include all necessary details, and as complete references as possible, especially to needed facts of analysis for Green's functions and the Faltings metrics.

linear algebra by serge lang: Indiscrete Thoughts Gian-Carlo Rota, 2009-11-03 Indiscrete Thoughts gives a glimpse into a world that has seldom been described that of science and technology as seen through the eyes of a mathematician. The era covered by this book, 1950 to 1990, was surely one of the golden ages of science as well as the American university. Cherished myths are debunked along the way as Gian-Carlo Rota takes pleasure in portraying, warts and all, some of the great scientific personalities of the period —Stanislav Ulam (who, together with Edward Teller, signed the patent application for the hydrogen bomb), Solomon Lefschetz (Chairman in the 50s of the Princeton mathematics department), William Feller (one of the founders of modern probability theory), Jack Schwartz (one of the founders of computer science), and many others. Rota is not afraid of controversy. Some readers may even consider these essays indiscreet. After the publication of the essay "The Pernicious Influence of Mathematics upon Philosophy" (reprinted six times in five languages) the author was blacklisted in analytical philosophy circles. Indiscrete Thoughts should become an instant classic and the subject of debate for decades to come.

**linear algebra by serge lang: Abstract Algebra with Applications** Karlheinz Spindler, 2018-05-04 A comprehensive presentation of abstract algebra and an in-depth treatment of the applications of algebraic techniques and the relationship of algebra to other disciplines, such as number theory, combinatorics, geometry, topology, differential equations, and Markov chains.

# Related to linear algebra by serge lang

**Linear - Plan and build products** Linear is shaped by the practices and principles that distinguish world-class product teams from the rest: relentless focus, fast execution, and a commitment to the quality of craft

**LINEAR** ( ( Control C

**LINEAR Definition & Meaning - Merriam-Webster** The meaning of LINEAR is of, relating to, resembling, or having a graph that is a line and especially a straight line : straight. How to use linear in a sentence

**Download Linear** Download the Linear app for desktop and mobile. Available for Mac, Windows, iOS, and Android

LINEAR OF The Company of the same rate as another, so that the relationship between them does not change

Back to Home: <a href="http://www.speargroupllc.com">http://www.speargroupllc.com</a>