algebra define

algebra define is the process of understanding a branch of mathematics that deals with symbols and the rules for manipulating those symbols. Algebra serves as a foundational element in mathematics, providing a framework for solving equations and understanding relationships between variables. This article will delve into the definition of algebra, its historical context, its various branches, and its applications in real-world scenarios. Through a comprehensive exploration, readers will gain a deeper appreciation of algebra's significance in both academic and practical settings.

- Introduction
- What is Algebra?
- · History of Algebra
- · Branches of Algebra
- · Applications of Algebra
- Conclusion
- FAQ

What is Algebra?

Algebra is a branch of mathematics that uses symbols and letters to represent numbers and quantities in mathematical expressions and equations. It is often described as a generalized arithmetic, allowing for the manipulation of variables in a systematic way. The key components of algebra include variables, constants, coefficients, expressions, and equations.

Key Components of Algebra

The fundamental elements of algebra can be outlined as follows:

- **Variables:** Symbols, often letters, that represent unknown values. Commonly used variables include x, y, and z.
- Constants: Fixed values that do not change, such as numbers like 2, 5, or -3.
- **Coefficients:** Numbers that multiply variables in an expression, for example, in 3x, the coefficient is 3.

- **Expressions:** Combinations of variables, constants, and coefficients that represent a value, such as 2x + 3.
- **Equations:** Mathematical statements that assert the equality of two expressions, such as 2x + 3 = 7.

By utilizing these components, algebra allows for the formulation and solving of problems that involve unknown quantities. This makes it a vital tool in various fields, including science, engineering, economics, and everyday problem-solving.

History of Algebra

The history of algebra can be traced back thousands of years and is rich with contributions from various cultures. The term "algebra" itself is derived from the Arabic word "al-jabr," which means "the reunion of broken parts." This term was first used in the title of a book by the Persian mathematician Al-Khwarizmi in the 9th century.

Key Historical Milestones

Several key milestones mark the evolution of algebra:

- **Babylonian Mathematics:** As early as 2000 BCE, the Babylonians used algebraic techniques to solve quadratic equations and problems involving areas.
- **Greek Contributions:** Ancient Greeks, such as Euclid and Diophantus, advanced algebra by formalizing methods for solving equations and developing number theory.
- **Islamic Golden Age:** During this period, mathematicians expanded upon Greek knowledge, leading to the development of symbolic algebra and the introduction of algorithms.
- **European Renaissance:** The 16th and 17th centuries saw a shift towards the use of symbols in equations, paving the way for modern algebra.

Through these contributions, algebra has evolved into a structured and essential mathematics discipline that is taught worldwide.

Branches of Algebra

Algebra can be divided into various branches, each focusing on different aspects and applications.

Understanding these branches can provide insight into the diverse nature of algebraic study.

Main Branches of Algebra

- **Elementary Algebra:** This branch deals with basic algebraic concepts and operations, typically taught in middle and high school. It includes solving simple equations and working with polynomials.
- **Abstract Algebra:** Also known as modern algebra, this branch studies algebraic structures such as groups, rings, and fields. It is more theoretical and foundational for higher mathematics.
- **Linear Algebra:** This focuses on vector spaces and linear mappings between these spaces. Applications include systems of equations, matrices, and transformations.
- **Boolean Algebra:** A subfield that deals with binary variables and logical operations. It is fundamental in computer science and digital circuit design.
- **Matrix Algebra:** This involves the study of matrices and their properties, including operations such as addition, multiplication, and finding determinants.

Each of these branches plays a crucial role in both theoretical mathematics and practical applications, highlighting algebra's versatility as a mathematical discipline.

Applications of Algebra

Algebra has a wide range of applications across various fields, demonstrating its importance beyond the classroom. Here are some areas where algebra is commonly utilized:

Practical Applications

- **Engineering:** Algebra is fundamental in designing structures, analyzing forces, and solving complex engineering problems.
- **Economics:** Economists use algebra to model economic phenomena, analyze data, and predict future trends.
- **Computer Science:** Algebraic concepts are essential in programming, algorithms, and data structure optimization.
- Physics: Many physical laws are expressed algebraically, allowing scientists to solve problems

related to motion, energy, and forces.

• **Finance:** Algebra is used to calculate interest rates, investment returns, and financial forecasts.

These examples illustrate how algebra is not only a theoretical subject but also a practical tool that supports advancements in numerous fields, enhancing our ability to solve complex problems and make informed decisions.

Conclusion

Algebra define encompasses a broad and essential area of mathematics that combines symbols and rules to solve problems and understand relationships. From its historical roots to its modern applications, algebra remains a cornerstone of mathematical education and practice. Its various branches provide specialized tools for tackling diverse challenges in science, engineering, economics, and beyond. As we continue to explore and utilize algebra, its significance in our everyday lives cannot be overstated.

Q: What is the basic definition of algebra?

A: Algebra is a branch of mathematics that deals with symbols and the rules for manipulating these symbols to solve equations and understand relationships among variables.

Q: How did algebra originate?

A: Algebra originated in ancient civilizations, with significant contributions from the Babylonians, Greeks, and Islamic scholars, culminating in the term "algebra" being derived from the Arabic word "al-jabr."

Q: What are the main branches of algebra?

A: The main branches of algebra include elementary algebra, abstract algebra, linear algebra, Boolean algebra, and matrix algebra, each focusing on different aspects and applications of algebraic concepts.

Q: How is algebra used in everyday life?

A: Algebra is used in everyday life for various purposes, including budgeting, cooking, planning travel, and analyzing data, allowing individuals to make informed decisions based on mathematical relationships.

Q: What role does algebra play in science and engineering?

A: Algebra plays a crucial role in science and engineering by providing the necessary tools to model phenomena, analyze forces, design systems, and solve complex equations essential for innovation and development.

Q: Can algebra be applied to computer science?

A: Yes, algebra is fundamental in computer science, particularly in programming, algorithm design, and data structures, where mathematical logic and relationships are essential for efficient computation.

Q: What is the difference between linear algebra and abstract algebra?

A: Linear algebra focuses on vector spaces and linear mappings between them, while abstract algebra studies algebraic structures like groups and rings, emphasizing theoretical foundations.

Q: How does algebra relate to geometry?

A: Algebra and geometry are interconnected through algebraic geometry, where algebraic equations describe geometric shapes and relationships, allowing for the analysis of geometric properties using algebraic methods.

Q: Why is learning algebra important?

A: Learning algebra is important as it develops critical thinking and problem-solving skills, provides a foundation for advanced mathematics, and is essential for various careers in science, technology, engineering, and mathematics (STEM).

Algebra Define

Find other PDF articles:

 $\underline{http://www.speargroupllc.com/gacor1-04/files?dataid=Mer34-2565\&title=anxiety-treatment-san-diego.pdf}$

algebra define: Primary Elements of Algebra Joseph Ray, 1866 **algebra define:** *New Elementary Algebra* Joseph Ray, 1894

algebra define: Ray's Algebra, First Book Joseph Ray, 1866

algebra define: Programming Languages and Their Definition H. Bekic, 1984-08 algebra define: Algebraic Methods in Philosophical Logic J. Michael Dunn, Gary

Hardegree, 2001-06-28 This comprehensive text demonstrates how various notions of logic can be

viewed as notions of universal algebra. It is aimed primarily for logisticians in mathematics, philosophy, computer science and linguistics with an interest in algebraic logic, but is also accessible to those from a non-logistics background. It is suitable for researchers, graduates and advanced undergraduates who have an introductory knowledge of algebraic logic providing more advanced concepts, as well as more theoretical aspects. The main theme is that standard algebraic results (representations) translate into standard logical results (completeness). Other themes involve identification of a class of algebras appropriate for classical and non-classical logic studies, including: gaggles, distributoids, partial-gaggles, and tonoids. An important sub title is that logic is fundamentally information based, with its main elements being propositions, that can be understood as sets of information states. Logics are considered in various senses e.g. systems of theorems, consequence relations and, symmetric consequence relations.

algebra define: Algebraic Geometry IV A.N. Parshin, I.R. Shafarevich, 2012-12-06 The problems being solved by invariant theory are far-reaching generalizations and extensions of problems on the reduction to canonical form of various is almost the same thing, projective geometry. objects of linear algebra or, what Invariant theory has a ISO-year history, which has seen alternating periods of growth and stagnation, and changes in the formulation of problems, methods of solution, and fields of application. In the last two decades invariant theory has experienced a period of growth, stimulated by a previous development of the theory of algebraic groups and commutative algebra. It is now viewed as a branch of the theory of algebraic transformation groups (and under a broader interpretation can be identified with this theory). We will freely use the theory of algebraic groups, an exposition of which can be found, for example, in the first article of the present volume. We will also assume the reader is familiar with the basic concepts and simplest theorems of commutative algebra and algebraic geometry; when deeper results are needed, we will cite them in the text or provide suitable references.

algebra define: Topics in Algebraic and Noncommutative Geometry Ruth Ingrid Michler, 2003 This book presents the proceedings of two conferences, Resolution des singularites et geometrie non commutative and the Annapolis algebraic geometry conference. Research articles in the volume cover various topics of algebraic geometry, including the theory of Jacobians, singularities, applications to cryptography, and more. The book is suitable for graduate students and research mathematicians interested in algebraic geometry.

algebra define: Handbook of Logic in Computer Science: Volume 5. Algebraic and Logical Structures S. Abramsky, Dov M. Gabbay, T. S. E. Maibaum, 2001-01-25 This handbook volume covers fundamental topics of semantics in logic and computation. The chapters (some monographic in length), were written following years of co-ordination and follow a thematic point of view. The volume brings the reader up to front line research, and is indispensable to any serious worker in the areas.

algebra define: Mathematical Physics Sadri Hassani, 2013-07-27 The goal of this book is to expose the reader to the indispensable role that mathematics plays in modern physics. Starting with the notion of vector spaces, the first half of the book develops topics as diverse as algebras, classical orthogonal polynomials, Fourier analysis, complex analysis, differential and integral equations, operator theory, and multi-dimensional Green's functions. The second half of the book introduces groups, manifolds, Lie groups and their representations, Clifford algebras and their representations, and fibre bundles and their applications to differential geometry and gauge theories. This second edition is a substantial revision with a complete rewriting of many chapters and the addition of new ones, including chapters on algebras, representation of Clifford algebras, fibre bundles, and gauge theories. The spirit of the first edition, namely the balance between rigour and physical application, has been maintained, as is the abundance of historical notes and worked out examples that demonstrate the unreasonable effectiveness of mathematics in modern physics.

algebra define: *Mathematics for Human Flourishing in the Time of COVID-19 and Post COVID-19* Mahouton Norbert Hounkonnou, Melanija Mitrović, 2023-07-04 The International Chair in Mathematical Physics and Applications (ICMPA - UNESCO chair), University of Abomey-Calavi,

Benin, and the Center for Applied Mathematics of the Faculty of Mechanical Engineering Niš, CAM-FMEN, organized a webinar on Mathematics for human flourishing in the time of COVID-19 and post COVID-19, 21 October 2020, supported by the City of Niš. The objectives of the webinar were to give precise information about the work that scientists do to cure the disease, to push forward technology, to understand our society and create new expressions of humanity, and to question the role of mathematics in the responses to this pandemic.

algebra define: A First Look at Rigorous Probability Theory Jeffrey S. Rosenthal, 2000 This textbook is an introduction to rigorous probability theory using measure theory. It provides rigorous, complete proofs of all the essential introductory mathematical results of probability theory and measure theory. More advanced or specialized areas are entirely omitted or only hinted at. For example, the text includes a complete proof of the classical central limit theorem, including the necessary continuity theorem for characteristic functions, but the more general Lindeberg central limit theorem is only outlined and is not proved. Similarly, all necessary facts from measure theory are proved before they are used, but more abstract or advanced measure theory results are not included. Furthermore, measure theory is discussed as much as possible purely in terms of probability, as opposed to being treated as a separate subject which must be mastered before probability theory can be understood.

algebra define: *The Normal Elementary Algebra* Edward Brooks, 1888 **algebra define:** Examination Exercises in Algebra Irving O. Scott, 1919

algebra define: Relational and Algebraic Methods in Computer Science Roland Glück, Luigi Santocanale, Michael Winter, 2023-03-07 This book constitutes the proceedings of the 20th International Conference on Relational and Algebraic Methods in Computer Science, RAMiCS 2023, which took place in Augsburg, Germany, during April 3–6, 2023. The 17 papers presented in this book were carefully reviewed and selected from 26 submissions. They deal with the development and dissemination of relation algebras, Kleene algebras, and similar algebraic formalisms. Topics covered range from mathematical foundations to applications as conceptual and methodological tools in computer science and beyond. Apart from the submitted articles, this volume features the abstracts of the presentations of the three invited speakers.

algebra define: Applied Artificial Intelligence Da Ruan, 2006 FLINS, originally an acronym for Fuzzy Logic and Intelligent Technologies in Nuclear Science, is now extended to Applied Artificial Intelligence for Applied Research. The contributions to the seventh in the series of FLINS conferences contained in this volume cover state-of-the-art research and development in applied artificial intelligence for applied research in general and for power/nuclear engineering in particular.

algebra define: Algebraic Geometry: Salt Lake City 2015 Richard Thomas, 2018-06-01 This is Part 2 of a two-volume set. Since Oscar Zariski organized a meeting in 1954, there has been a major algebraic geometry meeting every decade: Woods Hole (1964), Arcata (1974), Bowdoin (1985), Santa Cruz (1995), and Seattle (2005). The American Mathematical Society has supported these summer institutes for over 50 years. Their proceedings volumes have been extremely influential, summarizing the state of algebraic geometry at the time and pointing to future developments. The most recent Summer Institute in Algebraic Geometry was held July 2015 at the University of Utah in Salt Lake City, sponsored by the AMS with the collaboration of the Clay Mathematics Institute. This volume includes surveys growing out of plenary lectures and seminar talks during the meeting. Some present a broad overview of their topics, while others develop a distinctive perspective on an emerging topic. Topics span both complex algebraic geometry and arithmetic questions, specifically, analytic techniques, enumerative geometry, moduli theory, derived categories, birational geometry, tropical geometry, Diophantine questions, geometric representation theory, characteristic and -adic tools, etc. The resulting articles will be important references in these areas for years to come.

algebra define: Algebraic Geometry I: Schemes Ulrich Görtz, Torsten Wedhorn, 2020-07-27 This book introduces the reader to modern algebraic geometry. It presents Grothendieck's technically demanding language of schemes that is the basis of the most important developments in

the last fifty years within this area. A systematic treatment and motivation of the theory is emphasized, using concrete examples to illustrate its usefulness. Several examples from the realm of Hilbert modular surfaces and of determinantal varieties are used methodically to discuss the covered techniques. Thus the reader experiences that the further development of the theory yields an ever better understanding of these fascinating objects. The text is complemented by many exercises that serve to check the comprehension of the text, treat further examples, or give an outlook on further results. The volume at hand is an introduction to schemes. To get startet, it requires only basic knowledge in abstract algebra and topology. Essential facts from commutative algebra are assembled in an appendix. It will be complemented by a second volume on the cohomology of schemes.

 ${\bf algebra} \ {\bf define:} \ Introduction \ to \ Algebraic \ Geometry \ and \ Algebraic \ Groups \ , \ 1980-01-01 \ Introduction \ to \ Algebraic \ Geometry \ and \ Algebraic \ Groups$

algebra define: The Geometry of Infinite-Dimensional Groups Boris Khesin, Robert Wendt, 2008-09-28 This monograph gives an overview of various classes of infinite-dimensional Lie groups and their applications in Hamiltonian mechanics, fluid dynamics, integrable systems, gauge theory, and complex geometry. The text includes many exercises and open questions.

algebra define: Cyclic Homology Jean-Louis Loday, 2013-03-09 From the reviews: This is a very interesting book containing material for a comprehensive study of the cyclid homological theory of algebras, cyclic sets and S1-spaces. Lie algebras and algebraic K-theory and an introduction to Connes'work and recent results on the Novikov conjecture. The book requires a knowledge of homological algebra and Lie algebra theory as well as basic technics coming from algebraic topology. The bibliographic comments at the end of each chapter offer good suggestions for further reading and research. The book can be strongly recommended to anybody interested in noncommutative geometry, contemporary algebraic topology and related topics. European Mathematical Society Newsletter In this second edition the authors have added a chapter 13 on MacLane (co)homology.

Related to algebra define

Algebra - Wikipedia Elementary algebra is the main form of algebra taught in schools. It examines mathematical statements using variables for unspecified values and seeks to determine for which values the

Introduction to Algebra - Math is Fun Algebra is just like a puzzle where we start with something like "x - 2 = 4" and we want to end up with something like "x = 6". But instead of saying "obviously x=6", use this neat step-by-step

Algebra 1 | Math | Khan Academy The Algebra 1 course, often taught in the 9th grade, covers Linear equations, inequalities, functions, and graphs; Systems of equations and inequalities; Extension of the concept of a

Algebra - What is Algebra? | **Basic Algebra** | **Definition** | **Meaning,** Algebra deals with Arithmetical operations and formal manipulations to abstract symbols rather than specific numbers. Understand Algebra with Definition, Examples, FAQs, and more

Algebra in Math - Definition, Branches, Basics and Examples This section covers key algebra concepts, including expressions, equations, operations, and methods for solving linear and quadratic equations, along with polynomials and

Algebra | History, Definition, & Facts | Britannica What is algebra? Algebra is the branch of mathematics in which abstract symbols, rather than numbers, are manipulated or operated with arithmetic. For example, x + y = z or b-

Algebra Problem Solver - Mathway Free math problem solver answers your algebra homework questions with step-by-step explanations

Algebra - Pauls Online Math Notes Preliminaries - In this chapter we will do a quick review of some topics that are absolutely essential to being successful in an Algebra class. We review exponents (integer and

How to Understand Algebra (with Pictures) - wikiHow Algebra is a system of manipulating numbers and operations to try to solve problems. When you learn algebra, you will learn the rules to follow for solving problems

Algebra Homework Help, Algebra Solvers, Free Math Tutors I quit my day job, in order to work on algebra.com full time. My mission is to make homework more fun and educational, and to help people teach others for free

Algebra - Wikipedia Elementary algebra is the main form of algebra taught in schools. It examines mathematical statements using variables for unspecified values and seeks to determine for which values the

Introduction to Algebra - Math is Fun Algebra is just like a puzzle where we start with something like "x - 2 = 4" and we want to end up with something like "x = 6". But instead of saying "obviously x=6", use this neat step-by-step

Algebra 1 | Math | Khan Academy The Algebra 1 course, often taught in the 9th grade, covers Linear equations, inequalities, functions, and graphs; Systems of equations and inequalities; Extension of the concept of a

Algebra - What is Algebra? | **Basic Algebra** | **Definition** | **Meaning,** Algebra deals with Arithmetical operations and formal manipulations to abstract symbols rather than specific numbers. Understand Algebra with Definition, Examples, FAQs, and more

Algebra in Math - Definition, Branches, Basics and Examples This section covers key algebra concepts, including expressions, equations, operations, and methods for solving linear and quadratic equations, along with polynomials and

Algebra | History, Definition, & Facts | Britannica What is algebra? Algebra is the branch of mathematics in which abstract symbols, rather than numbers, are manipulated or operated with arithmetic. For example, x + y = z or b-

Algebra Problem Solver - Mathway Free math problem solver answers your algebra homework questions with step-by-step explanations

Algebra - Pauls Online Math Notes Preliminaries - In this chapter we will do a quick review of some topics that are absolutely essential to being successful in an Algebra class. We review exponents (integer and

How to Understand Algebra (with Pictures) - wikiHow Algebra is a system of manipulating numbers and operations to try to solve problems. When you learn algebra, you will learn the rules to follow for solving problems

Algebra Homework Help, Algebra Solvers, Free Math Tutors I quit my day job, in order to work on algebra.com full time. My mission is to make homework more fun and educational, and to help people teach others for free

Algebra - Wikipedia Elementary algebra is the main form of algebra taught in schools. It examines mathematical statements using variables for unspecified values and seeks to determine for which values the

Introduction to Algebra - Math is Fun Algebra is just like a puzzle where we start with something like "x - 2 = 4" and we want to end up with something like "x = 6". But instead of saying "obviously x=6", use this neat step-by-step

Algebra 1 | Math | Khan Academy The Algebra 1 course, often taught in the 9th grade, covers Linear equations, inequalities, functions, and graphs; Systems of equations and inequalities; Extension of the concept of a

Algebra - What is Algebra? | **Basic Algebra** | **Definition** | **Meaning,** Algebra deals with Arithmetical operations and formal manipulations to abstract symbols rather than specific numbers. Understand Algebra with Definition, Examples, FAQs, and more

Algebra in Math - Definition, Branches, Basics and Examples This section covers key algebra concepts, including expressions, equations, operations, and methods for solving linear and quadratic equations, along with polynomials

Algebra | History, Definition, & Facts | Britannica What is algebra? Algebra is the branch of

mathematics in which abstract symbols, rather than numbers, are manipulated or operated with arithmetic. For example, x + y = z or b

Algebra Problem Solver - Mathway Free math problem solver answers your algebra homework questions with step-by-step explanations

Algebra - Pauls Online Math Notes Preliminaries - In this chapter we will do a quick review of some topics that are absolutely essential to being successful in an Algebra class. We review exponents (integer

How to Understand Algebra (with Pictures) - wikiHow Algebra is a system of manipulating numbers and operations to try to solve problems. When you learn algebra, you will learn the rules to follow for solving problems

Algebra Homework Help, Algebra Solvers, Free Math Tutors I quit my day job, in order to work on algebra.com full time. My mission is to make homework more fun and educational, and to help people teach others for free

Algebra - Wikipedia Elementary algebra is the main form of algebra taught in schools. It examines mathematical statements using variables for unspecified values and seeks to determine for which values the

Introduction to Algebra - Math is Fun Algebra is just like a puzzle where we start with something like "x - 2 = 4" and we want to end up with something like "x = 6". But instead of saying "obviously x=6", use this neat step-by-step

Algebra 1 | Math | Khan Academy The Algebra 1 course, often taught in the 9th grade, covers Linear equations, inequalities, functions, and graphs; Systems of equations and inequalities; Extension of the concept of a

Algebra - What is Algebra? | **Basic Algebra** | **Definition** | **Meaning,** Algebra deals with Arithmetical operations and formal manipulations to abstract symbols rather than specific numbers. Understand Algebra with Definition, Examples, FAQs, and more

Algebra in Math - Definition, Branches, Basics and Examples This section covers key algebra concepts, including expressions, equations, operations, and methods for solving linear and quadratic equations, along with polynomials

Algebra | History, Definition, & Facts | Britannica What is algebra? Algebra is the branch of mathematics in which abstract symbols, rather than numbers, are manipulated or operated with arithmetic. For example, x + y = z or b-

Algebra Problem Solver - Mathway Free math problem solver answers your algebra homework questions with step-by-step explanations

Algebra - Pauls Online Math Notes Preliminaries - In this chapter we will do a quick review of some topics that are absolutely essential to being successful in an Algebra class. We review exponents (integer

How to Understand Algebra (with Pictures) - wikiHow Algebra is a system of manipulating numbers and operations to try to solve problems. When you learn algebra, you will learn the rules to follow for solving problems

Algebra Homework Help, Algebra Solvers, Free Math Tutors I quit my day job, in order to work on algebra.com full time. My mission is to make homework more fun and educational, and to help people teach others for free

Algebra - Wikipedia Elementary algebra is the main form of algebra taught in schools. It examines mathematical statements using variables for unspecified values and seeks to determine for which values the

Introduction to Algebra - Math is Fun Algebra is just like a puzzle where we start with something like "x - 2 = 4" and we want to end up with something like "x = 6". But instead of saying "obviously x=6", use this neat step-by-step

Algebra 1 | Math | Khan Academy The Algebra 1 course, often taught in the 9th grade, covers Linear equations, inequalities, functions, and graphs; Systems of equations and inequalities; Extension of the concept of a

Algebra - What is Algebra? | **Basic Algebra** | **Definition** | **Meaning,** Algebra deals with Arithmetical operations and formal manipulations to abstract symbols rather than specific numbers. Understand Algebra with Definition, Examples, FAQs, and more

Algebra in Math - Definition, Branches, Basics and Examples This section covers key algebra concepts, including expressions, equations, operations, and methods for solving linear and quadratic equations, along with polynomials and

Algebra | History, Definition, & Facts | Britannica What is algebra? Algebra is the branch of mathematics in which abstract symbols, rather than numbers, are manipulated or operated with arithmetic. For example, x + y = z or b-

Algebra Problem Solver - Mathway Free math problem solver answers your algebra homework questions with step-by-step explanations

Algebra - Pauls Online Math Notes Preliminaries - In this chapter we will do a quick review of some topics that are absolutely essential to being successful in an Algebra class. We review exponents (integer and

How to Understand Algebra (with Pictures) - wikiHow Algebra is a system of manipulating numbers and operations to try to solve problems. When you learn algebra, you will learn the rules to follow for solving problems

Algebra Homework Help, Algebra Solvers, Free Math Tutors I quit my day job, in order to work on algebra.com full time. My mission is to make homework more fun and educational, and to help people teach others for free

Back to Home: http://www.speargroupllc.com